
Proceedings of the Sixth International  
Workshop on Digital Forensics & Incident Analysis (WDFIA 2011) 

 

133 

LUARM – An Audit Engine for Insider Misuse Detection 

G. Magklaras, S.M. Furnell and M. Papadaki 
 

Centre for Security, Communications and Network Research, University of 
Plymouth, Plymouth, UK 

e-mail: cscan@plymouth.ac.uk 

Abstract 

'Logging User Actions in Relational Mode' (LUARM) is an open source audit engine for 
Linux. It provides a near real-time snapshot of a number of user action data such as file access, 
program execution and network endpoint user activities, all organized in easily searchable 
relational tables. LUARM attempts to solve two fundamental problems of the insider IT 
misuse domain. The first concerns the lack of insider misuse case data repositories that could 
be used by post-case forensic examiners to aid an incident investigation. The second problem 
relates to how information security researchers can enhance their ability to specify accurately 
insider threats at system level. This paper presents LUARM's design perspectives and a 'post 
mortem' case study of an insider IT misuse incident. The results show that the prototype audit 
engine has a good potential to provide a valuable insight into the way insider IT misuse 
incidents manifest on IT systems and can be a valuable complement to forensic investigators 
of IT misuse incidents. 

Keywords 

Insiders, misuse, detection, auditing, logging, forensics 

1. Introduction 

The problem of insider IT misuse is a very real threat for the health of IT 
infrastructures encompassing both intentional activities (e.g. targeted information 
theft and accidental misuse (e.g. unintentional information leak). Numerous studies 
have tried to define an “insider” in the context of Information Security. A generic 
definition from Probst et al. (2009) is ”a person that has been legitimately 
empowered with the right to access, represent, or decide about one or more assets of 
the organization's structure”. 

The most widely known insider misuse cases are usually about intellectual property 
theft. The arrest of Lan Lee and Yuefei Ge by FBI agents (Cha, 2008) is a classic 
case. The arrested men were engineers of NetLogic Microsystems (NLM) until July 
2003. During the time of their employment, they were downloading trade sensitive 
documents from the NLM headquarters into their home computers. These documents 
contained detailed descriptions of the NLM microprocessor product line. Eventually, 
their ties to the Chinese government and military were discovered by investigators.     
However, both mass media case descriptions and relevant security surveys do not 
provide the tools or the methodology to systemically study and mitigate the problem. 
Insider IT misuse is a multi-faceted problem and one of the things insider misuse 



Proceedings of the Sixth International  
Workshop on Digital Forensics & Incident Analysis (WDFIA 2011) 
 

134 

researchers really need is a repository of more detailed case descriptions with a focus 
on the impact insider misuse actions have at computer system level (NSTISSAM). 
This is the area of Insider Threat Specification, the core concept behind the proposed 
logging engine which is examined in the next section. 

2. Insider Threat Specification and modelling 

Threat specifications follow the principles of intrusion specification, a concept which 
is not new in the information security world. Techniques to describe threats exist for 
an entire range of information security products, from anti-virus software to several 
intrusion detection/prevention systems (IDS/IPS) (Bace, 2000), where threats are 
specified by anomaly detection, pattern matching (also known as misuse detection) 
mechanisms or a heuristic-based combination of the two.  Insider Threat 
Specification is the process of using a standardized vocabulary to describe in an 
abstract way how the aspects and behaviour of an insider relate to a security policy 
defined misuse scenario. Figure 1 shows the information flow of a typical IT misuse 
detection system.  The security specialist translates the Security (and resulting 
monitoring policy) into a set of misuse scenario signatures, standard descriptions of 
IT misuse acts that describe the behaviour of a user at process execution, filesystem 
and network endpoint level (Magklaras et al, 2006). The misuse scenario signatures 
and collected audit data (Bace, 2000) from the IT infrastructure are fed into a misuse 
detection engine.  

 

Figure 1: Information flow in an insider misuse detection system 

Vital to insider threat specification is the structure and content of the audit record, at 
the center of Figure 1. If the audit record is incomplete, in terms of the type of 
information we need to log or unavailable, because the data are vanished due to bad 
system design or intentional data corruption, the specification of insider threats is 
useless. This is one of the primary objectives that LUARM tries to address by 
providing an evidence rich and reliable audit record format. 



Proceedings of the Sixth International  
Workshop on Digital Forensics & Incident Analysis (WDFIA 2011) 

 

135 

3. Insider misuse detection auditing requirements 

Bace (Bace, 2000) discusses intrusion detection (and hence misuse detection) as an 
audit reduction problem. Audit reduction is the process of filtering the relevant 
information out of the audit records, in order to infer a partially or fully realized 
threat and excluding information that is irrelevant or redundant.   The structure of an 
audit record is important for a misuse detection system. A good structure has well 
defined fields that can be easily parsed. Moreover, the structure of the audit record 
should easily facilitate relational type queries. It is necessary for the information to 
be applied on the disjunction (OR), conjunction (AND), and negation (NOT) 
operators, in order to increase the query versatility and speed of response. 

A desired aspect of a suitable crafted audit record format for insider misuse detection 
is clear user accountability. This means that the audit record should be able to 
reliably and easily associate user entities to recorded actions. The wealth and 
replication of vital information in various types of audit records is a requirement for 
proper event correlation and step instance selection (Meier, 2004). 

Another important issue of audit record engines is that of referencing time. In large 
IT infrastructures that span several networks and time zones, audited systems might 
report in different time formats. They can also experience 'clock skew', a difference 
in time recorded amongst computer systems due to computer clock hardware 
inaccuracies, especially when an NTP (Mills et al, 2010) server is not available to 
provide a reliable time source.   

One of the most recent and commonly referenced  works that concern the format of 
audit records is the Common Criteria for Information Technology Security 
Evaluation (Common Criteria Portal, 2009) standards.  The Common Criteria (CC) 
effort does not fully address the previously mentioned audit record requirement 
omissions of its predecessor, the Orange Book (DOD 5200.28-std, 1985). However, 
some of its high level functional audit requirements are interesting. In particular, CC 
requirement 88 of section 8.2  states that: “At FAU_GEN.2 User identity association, 
the TSF shall associate auditable events to individual user identities.” In CC 
terminology TSF stands for Target of evaluation Security Functionality, meaning 
essentially the software and hardware under evaluation. In addition, CC mentions a 
set of requirements that concern various aspects of the audit record storage.  Once 
again, the requirements are given in high-level terms, specifying that: 

 unauthorized deletion and/or modification of audit records 
 any other condition that could cause storage failure. 

should be mitigated. 

The next section discusses whether today's audit engines satisfy these requirements. 

 



Proceedings of the Sixth International  
Workshop on Digital Forensics & Incident Analysis (WDFIA 2011) 
 

136 

4. Existing audit record engines 

Audit record engines have existed since the very early days of operating systems. 
However, not all of them fit the requirements of misuse detection engines, as 
discussed in the previous section. 

The most common variety of audit record engines uses information that comes 
directly from the Operating System. Characteristic examples of this category of 
engines are Oracle's Basic Security Module (BSM) auditing system (Oracle 
Corporation, 2010) and its open source implementation OpenBSM (Trusted BSD 
Project portal, 2009), the psacct audit package (psacct utilities, 2003), as well as the 
syslogd (Gerhards, 2009) and WinSyslogd (Monitorware, 2010) applications. 

After examining these engines, serious deficiencies can be located in terms of use for 
insider threat prediction. Firstly, many engines consolidate information from various 
different devices and operating system vendors, but they are far from describing 
sufficiently issues in an operating system agnostic way. In addition, process 
accounting tools might not cover sufficiently the variety of different system level 
information (file, process execution and network level). In fact, some of them might 
miss data as described in (HP Portal, 2003). A logging engine that cannot facilitate 
the description of both static and live forensic insider misuse system data at the 
network, process and filesystem layer could hinder a forensic examination of an IT 
misuse incident. Static digital forensic analysis is employed by most forensic tools 
and cannot portray accurately the non-quiescent (dynamic) state of the system under 
investigation. Information such as active network endpoints, running processes, user 
interaction data (number of open applications per user, exact commands), as well as 
the content of memory resident processes may not be recorded accurately on non-
volatile media.  (Hay et al, 2009) discuss the shortcomings of static digital forensics 
analysis in detail. In order to overcome the barriers of static analysis, Adelstein et al. 
(2006) discuss the virtues of non-quiescent or live analysis, which essentially gathers 
data while the system under-investigation is operational. 

Several audit record systems do not report consistently the timing of audit record 
generation. For instance, many implementations of the syslog audit standard and 
psacct tools generate the audit record by entering the time stamp of the client system. 
If the client system does not have a reliable time source, this generates inaccurate 
information and could seriously hinder event correlation. 

Finally, one of the most serious drawbacks of existing audit approaches is the 
inability to store the audit information in a form that can utilize relational queries. 
Section 3 discussed the reasoning behind this requirement. In one sense, some people 
might argue that this is an audit management feature rather than an audit log design 
issue. However, as section 3 discussed the advantages of using a relational schema to 
form audit queries in a structured log record, the author's view is that everything that 
increases the expressive power of an audit log query should be incorporated in the 
structure of the audit log, rather than being left as an 'add-on' feature. 



Proceedings of the Sixth International  
Workshop on Digital Forensics & Incident Analysis (WDFIA 2011) 

 

137 

5. The LUARM audit engine 

LUARM is a prototype Open Source audit record engine (LUARM portal, 2010) that 
uses a Relational Database Management System (RDBMS) for the storage and 
organization of audit record data. The employment of an RDBMS is a core design 
choice for the LUARM engine. Beyond the relational type query support discussed 
in Section 3, an RDBMS offers the necessary data availability, integrity and 
scalability features, because most RDBMS tools are explicitly designed to organize 
and store large amounts of data, as dictated by many CC requirements.  The 
Structured Query Language (SQL) facilitates instance selection and completion, as 
well as data correlation can be performed by using clauses such as 'FROM' and 
'WHERE'. 

 

Figure 2: The LUARM architecture 



Proceedings of the Sixth International  
Workshop on Digital Forensics & Incident Analysis (WDFIA 2011) 
 

138 

 

Figure 3: LUARM relational table structure 

Figure 2 depicts the module client-server architecture of the LUARM audit engine. 
On the left of the figure, we can see a set of audited computer clients. Every client is 
running a unique instance of a set of monitoring scripts. Each of the client scripts 
audits a particular system level aspect of the operating system: 'netactivity.pl'  audits 
the addition and creation of endpoints, 'fileactivity.pl' records various file operations, 
'psactivity' provides process execution audit records and 'hwactivity.pl' keeps a log of 
hardware devices that are connected or disconnected from the system. The right hand 
side contains the centralized server part of the architecture where audit data are 
stored, maintained and queried in a MySQL (Oracle MySQL portal, 2010) based 
RDBMS (other RDBMS systems could be used as well). The Perl programming 
language is used to implement the modules and the communication between client 
and server is performed via a Perl DBI (CPAN-DBI, 2010) interface. 

The client-server architecture avoids leaving the data in vulnerable clients. The 
central host MySQL server has its own authentication system responsible for 
controlling who has access to the audit data. By authenticating audit reviewers 
against the RDBMS authentication system, we de-couple the users being audited 
from the auditors, a desirable property that ensures that audited insiders cannot easily 
manipulate audit data. Furthermore, by assigning a separate database instance per 
audited client, we reduce the likelihood of compromising the data for all clients. If 
the database access credentials of one client are compromised, the damage is limited 
to the audit data for that client only. 



Proceedings of the Sixth International  
Workshop on Digital Forensics & Incident Analysis (WDFIA 2011) 

 

139 

Figure 3 displays the relational table format for the four main types of recorded audit 
data in LUARM: fileaccess, process execution, network endpoint and hardware 
device information.  Temporal information is provided by event creation time stamps 
(cyear, cmonth, cday,chour,cmin,csec) and respective event destruction time stamps 
(dyear,dmonth,dday,dhour,dmin,dsec). The combination of the two types of 
timestamps can pinpoint exact time intervals for events in a consistent format for all 
recorded event types. In contrast, most audit systems may provide only event 
creation time references without hinting for the duration of an event. 

The sampling of events is done at 100ms intervals and is adjustable by means of 
modifying certain variables on each monitoring module. At first, this might seem 
problematic as many attack steps can occur much faster than that amount of time. 
However, in an event sampling loop, one has to account for the time delay to update 
the database, which can vary from 10ms to 60-70 ms intervals on heavily loaded 
clients and servers. In addition, time resolution varies amongst operating systems. 
For these reasons, LUARM relies on the Perl Time::HiRes module (CPAN-HiRes, 
2010) to bridge the gap between the different operating system timer 
implementations. A time granularity of 100 ms is also a good compromise between 
accuracy and scalability. The more granular the time resolution, the greater the 
computational load for both the client and the server LUARM parts. 

Another important design decision that concerns the format of the audit table was to 
include common attributes amongst different event tables for the purposes of 
increasing the ability to correlate events and provide user entity accountability. For 
instance, fields such as 'username' (user entity), pid (numeric process ID of the 
program responsible for the event creation) and application (string that represents the 
name of the application that matches the pid) can be found in most of the event 
tables. This enables the audit reviewer to use SQL and relate events, so he can form 
queries of the type “Find the network endpoint created by program x of user y” in an 
easy manner.   

The 'fileinfo' table stores file access related events. The filename specification 
consists of two parts. The 'filename' field which holds the filename with the file 
extension (i.e. data.txt) and the 'location' field which contains the absolute path of the 
file. The fact that the two are divided in separate fields makes it easier to search by 
location or by field name only, increasing the versatility of mining file data. In order 
to populate the data on this table, LUARM relies on the 'lsof' utility (Pogue et al, 
2008). The utility is versatile and can record a variety of events including file and 
network endpoints in real time. It exists for an entire range of UNIX/Linux and 
MACOSX operating systems, covering a large spectrum of computing devices. 

The 'netinfo' table logs the creation and destruction of network endpoints. In the 
context of LUARM, the term 'network endpoint' refers to the operating system data 
structures employed to facilitate network connectivity via the TCP/IP protocol suite.  
Network endpoint activity is considered as live forensic data.  A series of table fields 
are used to record endpoint details ('sourceip', 'destip', 'sourceport' , 'destport' and 
'transport' record source and destination IP addresses, source and destination port and 



Proceedings of the Sixth International  
Workshop on Digital Forensics & Incident Analysis (WDFIA 2011) 
 

140 

transport protocol respectively). The fields 'sourcefqdn' and 'destfqdn' hold the DNS 
(Mockapetris, 1987) resolved Fully Qualified Domain Name (FQDN) for the source 
and destination hosts. 

The 'sourcefqdn' and 'destfqdn' fields are not populated by the client LUARM 
routines. In contrast, they are populated on the LUARM server side. Due to the 
criticality of correct DNS data for the audit records, the frequent DNS configuration 
errors (Barr, 1996), aspects of DNS operational security (Bauer, 2003) and client 
performance, the endpoint name resolution is left on the server side. This provides a 
greater control on DNS derived data and does not rely on vulnerable clients 
(malicious insiders or software vulnerabilities) for auditing network connections. 

Process execution activity is recorded in the 'psinfo' table (Figure 3). This table 
records 'live' forensic data. The table includes both the proces ID ('pid') and parent 
process id ('ppid'), so that process execution flow can be traced back to the original 
process. In order to speed up process execution searches, the LUARM engine also 
separates the executed command ('command') from its arguments ('arguments'). One 
might like to search them separately in the process of mining process execution data. 
The 'ps' UNIX/Linux utility (Pogue et al, 2008) is used to collect process 
information. For all active processes (whose d* temporal fields are NULL), LUARM 
updates in near real time these two fields. 

The 'hwinfo' table logs 'live' device connection and disconnection events. All events 
generated by devices that connect to the Peripheral Component Interconnect (PCI 
and PCI-Express) and Universal Serial (USB) buses. These two buses are commonly 
found on a large array of computing devices. For instance, an audit reviewer or 
forensics analyst might correlate file activity to a portable storage medium 
connection, as part of an intellectual property theft scenario. In that case, the 'hwinfo' 
table logs information in various fields that help identify the attached device 
('devstring', 'devvendor'), the bus the device was connected to ('bus') and correlate 
the device attachment event against a number of users that are logged into the system 
at the time of the device attachment ('userslogged'). 

6. LUARM in action 

Having a proposed structure and content for the various categories of audit events as 
described in the previous section, we can now issue sample SQL statements to 
illustrate how audit data mining is performed. Figure 4 displays sample queries that 
demonstrate the expressiveness of LUARM's audit record content and structure.    

There are a few important observations to make about the example LUARM SQL 
queries. The first one concerns the embedding of system specific knowledge inside 
the statement. In essence, the third example of Figure 4 defines a step of an insider 
trying to transfer a sensitive file to a portable medium. One has to know the name of 
the sensitive file 'prototype.ppt' and also the fact that '/media' is used as a mount 
point for portable media for that host. Additional possible destination locations could 
be specified by means of OR operators.  The use of the 'RLIKE' operator (RLIKE 



Proceedings of the Sixth International  
Workshop on Digital Forensics & Incident Analysis (WDFIA 2011) 

 

141 

RegExp, 2008), always in relation to the second and third examples of Figure 4. The 
operator implements a regular expression type of match. Apart from the conjunction 
operator (OR), regular expressions give the specification polymorphic properties 
(one specification string, many matching results), a desirable property for compact 
misuse detection language statements. 

Figure 4: Using SQL to mine data in LUARM 

LUARM was tested on a variety of simulated insider misuse scenarios. The scenarios 
were derived by real world LUARM captured data. However, permission to publish 
the original audit data was not obtained by the organizations in question. Thus, we 
had to reconstruct the misuse incidents by means of writing down a text based 
description of each incident and ask a team of users to re-enact it under a controlled 
IT infrastructure. The following paragraphs will present one of these incidents and 
demonstrate how the correlation versatility of the LUARM relational audit log 
structure can shed forensic light into the actions of a malicious insider. The scenario 
is provided below: 

'Autobrake' Corp is a company designing car braking systems. Their 
engineering department is the most information sensitive work area. The 
braking system design process takes place in high performance Linux 
workstations, one for each design engineer. The engineers have normal user 
rights to the workstations. Superuser rights (root) is given only to the IT 
admin. The designs reside on the local hard drives of the workstations and the 
company's IT policy forbids any transfer of sensitive data to portable media. 
Autobrake's system administrator has requested a salary raise various times. 
This has been denied by management. The system administrator is lured by a 
competing company that asked him to deliver schematics of the new and 
revolutionary Autobrake's RGX9 SUV braking system in return for a large 
amount of money. Enjoying the trust of everyone and having full control of 
the engineering CAD workstations, the system administrator decides to take 
the offer of the competing company. He performs the intellectual property 
theft by following a well designed approach which is summarized below: 



Proceedings of the Sixth International  
Workshop on Digital Forensics & Incident Analysis (WDFIA 2011) 
 

142 

• He carefully chooses the user account of a mechanical engineer 
(username 'engineer3') that had some disputes over work issues with 
management. He aims to avoid detection by means of masquerading as the 
engineer in question. 

• After successfully masquerading as the engineer in the IT system he 
uses a portable USB key to obtain the commercially sensitive RGX9 
schematic, leaving only the traces of the engineer “actions”. 

Assuming that a third party auditor manages the audit process and monitors the 
logging (ensuring that the logging infrastructure works) and that all Engineering 
workstations are monitored by LUARM, we are now tasked to find the offender and 
clear the name of 'engineer3'. The reader should consult the LUARM relational table 
structure (Figure 3), in order to follow the SQL queries presented below. 

The investigation begins from the most important file, that of RGX9, and the people 
that work on it. From the audit record of the workstations with name 'proteas', we 
utilize LUARM to find out who has been using the file: 

mysql> select username,pid,cday,chour,cmin,location,filename from fileinfo 
where filename RLIKE 'RGX9' OR location RLIKE 'RGX9' \G 

From the many hits we get from the data base, we focus our attention on the 
following ones: 

*************************** 111. row *************************** 
username: engineer3 
pid : 8301 
cday: 4 
chour: 15 
cmin: 30 
location: /storage/users/engineer3/work/designs  
filename:RGX9.jpg 
... 
*************************** 118. row *************************** 
username: engineer3 
pid: 28538 
cday: 4 
chour: 15 
cmin: 32 
location: /media/U3SAN03-12 
filename: RGX9.jpg 
 
The reason these file access patterns looked suspicious is that they were different 
than the normal pattern of accessing the file by the staff engineer. Normally, user 
'engineer3' would access the file by means of certain design and image editing 
applications, under its usual directory (/storage/users/engineer3/work/designs). This 
time, however, things look a bit different, if one follows the association of file access 



Proceedings of the Sixth International  
Workshop on Digital Forensics & Incident Analysis (WDFIA 2011) 

 

143 

to process execution, in order to confirm which programs performed the file 
transaction. The following SQL queries achieve the desired association: 

mysql>select username,pid,command,arguments,cyear,cday,chour,cmin from 
psinfo where username='engineer3' AND pid='8031' AND cyear='2011' AND 
cday='4' AND chour='15' AND cmin='30; 
 
*************************** 1. row *************************** 
username: engineer3 
pid: 8031 
command: /bin/cp 
arguments: work/designs/RGX9.jpg /tmp/ 
cyear: 2011 
cday: 4 
chour: 15 
cmin: 30 
 
mysql>select username,pid,command,arguments,cyear,cday,chour,cmin from 
psinfo where username='engineer3' AND pid='8031' AND cyear='2011' AND 
cday='4' AND chour='15' AND cmin='30; 
 
*************************** 1. row *************************** 
username: root 
pid: 28538 
command: mv 
arguments: RGX9.jpg /media/U3SAN03-12 
cyear: 2011 
cday: 4 
chour: 15 
cmin: 32 
 

Essentially, the previous results verify that the file was first copied from the normal 
directory to /tmp and then was moved to the /mnt/usb. At this point, a little bit of 
system specific knowledge comes into light, as /mnt/usb is the usual mount point 
where Linux links portable storage media to the filesystem. Hence, the question to 
raise is whether a portal storage medium was connected to the workstation, prior to 
the 'mv' file transaction. The query result yields a positive answer: 

mysql> select * from hwinfo where cyear='2011' AND cmonth='01' AND 
cday='04' AND chour='15'\G 
*************************** 1. row *************************** 
hwdevid: 71 
md5sum: a16e7386f14de769a7a9491da2071f5b 
cyear: 2010 
cmonth: 12 
cday: 4 
chour: 15 



Proceedings of the Sixth International  
Workshop on Digital Forensics & Incident Analysis (WDFIA 2011) 
 

144 

cmin: 30 
csec: 28 
devbus: USB 
devstring: Cruzer Micro U3    
devvendor: SanDisk Corp.     
userslogged: engineer3,root 
dyear: 2010 
dmonth: 1 
dday: 4 
dhour: 15 
dmin: 33 
dsec: 38 
 

This database hit seems to be in line with the actions of engineer3, as it indicates a 
device connection before the execution of the 'mv' command and a disconnection 
well after the mv command.  Thus, everything seems to point out that 'engineer3' 
violated the company policy and transferred a sensitive file to a USB medium, 
against the company IT regulations. However, this had been categorically denied by 
the actual person. A good but non IT based alibi for the staff engineer was that he 
exited the building with his security card token around 14:50, returning back to his 
desk at 15:50, a wide gap for him. Clearly, something else was going on and the clue 
was the 'userslogged' field of the last LUARM result. This 'hwinfo' LUARM table 
field contains the usernames for accounts that are logged into the workstation at the 
time of the device connection. Apart from 'engineer3' we note the root account being 
active, which is clearly the only other choice that, under the circumstances, could 
have performed the mount procedure.      

Based on the time stamp of the mv operation, a careful investigation of the root 
account actions reveals a key command execution, derived from the 'psinfo' table: 

mysql> select * from psinfo where pid='27865' AND cyear='2011' AND cday='4' 
AND cmonth='1' AND chour='15' AND cmin >= '20' AND cmin <='33' \G 
*************************** 1. row *************************** 
psentity: 97654 
md5sum: 7067284f2e1aefc430339ef091b4e41b 
username: root 
pid: 27865 
ppid: 26407 
pcpu: 0.0 
pmem: 0.0 
command: su 
arguments: - engineer3 
cyear: 2011 
cmonth: 1 
cday: 4 
cmin: 28 
chour: 15 



Proceedings of the Sixth International  
Workshop on Digital Forensics & Incident Analysis (WDFIA 2011) 

 

145 

csec: 36 
dyear: 2011 
dmonth: 1 
dday: 4 
dhour: 15 
dmin: 28 
dsec: 39 
 
The 'su' command is used routinely by administrators to switch user credentials, in 
order to test environment settings and perform system tasks (Garfinkel et al, 1996). 
However, it can be easily used as a masquerading tool to covertly perform actions 
using the credentials of somebody else.  A further investigation also found the USB 
key on the desk of the IT administrator with the RGX9.jpg file. The hwinfo table 
device identifier data ('devstring', 'devvendor') as well as the mount point identifier 
(/media/U3SAN03-12) from the psinfo commands contributed towards strengthening 
the final piece of the puzzle. 

This case shows the versatility of the relational structure of the LUARM record that 
showed the way from simple file operation to related program execution and other 
events that can provide strong evidence and lead to the misuser. In addition, LUARM 
has also been used successfully to provide evidence about security incidents of 
external origin (Magklaras, 2011). Thus, it offers a valuable complement of existing 
logging mechanisms. 

7. Conclusions 

A very important tool to mitigate Insider IT misuse is an audit record which is 
specifically designed to address its various needs, as well as complement existing 
forensic tools when security specialists perform a post-mortem incident examination. 
LUARM is an audit engine that provides a detailed log of user actions at file, process 
execution and network endpoint level stored in a Relational Database Management 
System. Its file, process and network endpoint data provide a dynamic forensic view 
of the system, a useful complement to existing forensic tools that offer only static 
data in their majority. The relational storage layer increases the correlation versatility 
amongst the different types of audit data, as it is vital to be able to perform various 
associations during the investigation of an incident (process to file, process to 
network activity) and reliably relate actions to user entities. 

The results are promising, showing a much better way to examine a system than 
looking at static text files which are difficult to parse and even more difficult to 
correlate. However, LUARM is a work in progress. It has its deficiencies and needs 
many improvements, in order to become a production real-world audit engine for 
insider misuse.   

The first issue that was identified relates to the sampling frequency of user processes 
execution. After examining carefully the consistency of audit logs, it became evident 
that LUARM was losing process execution data. A fault was located at the process 



Proceedings of the Sixth International  
Workshop on Digital Forensics & Incident Analysis (WDFIA 2011) 
 

146 

execution monitoring module. Due to the way the sampling loop was written in that 
module, the effective sampling frequency could exceed by far the desired 100 
millisecond sampling frequency. As a result, LUARM would miss processes that 
executed by various users in the system.  The module was re-written using an 
entirely different process execution sampling philosophy. A Linux kernel technique 
called 'execve wrapping' was employed by adopting the Snoopy logger open source 
software (Snoopylogger portal, 2000).  A modified 'execve wrapper' logger like 
'Snoopy' logger  provides a way to log the process execution and its arguments 
without relying on a sampling loop and is thus a more efficient interface to capture 
live process execution data. This solved the problem of losing process execution data 
due to a slow sampling rate and thus corrected an important deficiency of LUARM. 

Addressing the issue of user privacy is not so straightforward. There is always a 
tension between insider IT misuse monitoring and privacy. LUARM needs to retain 
and collect data about a user's behavior, in order to help the analyst infer IT misuse. 
In direct contrast, privacy dictates the right of individuals to define whether 
somebody will collect data about their online actions and the extent or way the data 
can be used.  The best compromise between these two opposing needs is to control 
the amount and type of logged data. This can be achieved by pseudo-anonymizing 
certain parts of the audit record, in order to protect certain aspects of the user privacy 
but still be able to infer IT misuse reliably.  The term 'Privacy-Respecting Intrusion 
Detection' (Flegel, 2007), encompasses all the efforts of achieving a good 
compromise between the need to monitor and the need to respect user privacy. 

The achievement of the LUARM prototype has been to demonstrate that structured 
evidence based logging for IT misuse is feasible.  The authors welcome feedback and 
participation to the development of its code base. The prototype is not yet ready for 
production deployment, but it should be suitable for experimentation and has already 
proved its value on a number of insider IT misuse incidents. 

8. Acknowledgements 

The authors wish to thanks the University of Oslo IT engineers Harald Dahle, Jean 
Lorentzen and Melaku Tadesse for helping with the simulation of various misuse 
scenarios. 

9. References 

Adelstein F. (2006), “Live Forensics: Diagnosing Your System without Killing it First”, 
Comm. ACM, vol.49, no.2, 2006, pp. 63-66. 

Bace R. (2000), “Intrusion Detection”, Macmillan Technical Publishing, Indianapolis, USA, 
ISBN: 1-578701856, pp. 38-39 discuss the terms 'misuse detection' and 'anomaly detection' in 
an intrusion specification context, pp. 47-66 discuss various audit record issues. 

Barr D. (1996),  “Common DNS Operational and Configuration Errors”,  Internet Engineering 
Task Force (IETF) Request For Comment (RFC) 1537, February 1996. 



Proceedings of the Sixth International  
Workshop on Digital Forensics & Incident Analysis (WDFIA 2011) 

 

147 

Bauer M. (2003), “Building secure servers with Linux”, O'Reilly & Associates, ISBN: 0-596-
00217-3: Chapter 6, pp. 154-196. 

Cha A.E. (2008), “Even spies embrace China's free market.”, 
WashingtonPost,February15,2008,www.washingtonpost.com/wpdyn/content/article/2008/02/1
4/AR2008021403550.html (Accessed 03 March 2011) 

Common Criterial Portal (2009), “The Common Criteria for Information Technology Security 
Evaluation”,  Version 3.1, Revision 3, July 2009. Part 2: Functional security 
components,www.commoncriteriaportal.org/files/ccfiles/CCPART1V3.1R3.pdf (Accessed 03 
March 2011) 

CPAN-DBI (2010), “The Perl Database Interface (DBI) module” at the Comprehensive Perl 
Archive Network (CPAN),search.cpan.org/~timb/DBI-1.615/DBI.pm (Accessed  03 March 
2011) 

CPAN-HiRes (2010), “The Perl High Resolution Timer module” at the Comprehensive Perl 
Archive Network (CPAN),search.cpan.org/~jhi/Time-HiRes-1.9721/HiRes.pm (Accessed 03 
March 2011) 

DOD 5200.28-std (1985), “Department of Defense Trusted Computer System Evaluation 
Criteria”, National Computer Security Center: Orange Book, DOD 5200.28-std, December 
1985. 

Flegel U. (2007), “Privacy-Respecting Intrusion Detection”,  Advances in Information 
Security, Springer, ISBN: 978-0-0387-34346-4 . 

Furnell S. (2004), “Enemies within: the problem of insider attacks”, Computer Fraud and 
Security, Volume 2004 Issue 7, pp. 6-11. 

Garfinkel S, Spafford G. (1996), “Practical UNIX and Internet Security”, Second Edition, 
O’Reilly and Associates,  Sebastopol, CA, ISBN: 1-56592-148-1 

Gerhards R. (2009), “The Syslog Protocol”, Internet Engineering Task Force (IETF), Request 
for Comment (RFC) 5424, March 2009. 

Hay B., Nance K., Bishop M. (2009), “Live Analysis Progress and Challenges”, IEEE 
Security & Privacy, Volume 7, Number 2, pp. 30-37. 

HP Portal (2003), “psacct process accounting misses some commands”, HP IT 
,forums11.itrc.hp.com/service/forums/questionanswer.doadmit=109447626+1286381845785+
28353475&threadId=1413576  (Accessed 02 February 2011) 

LUARM portal (2010),luarm.sourceforge.net/ (Accessed 03 March 2011) 

Snoopylogger  (2000), http://sourceforge.net/projects/snoopylogger/ (Accessed 04 May 2011) 

Magklaras G., Furnell S., Brooke P. (2006), “Towards an Insider Threat Prediction 
Specification Language”, Information Management & Computer Security, (2006)  vol. 14, no. 
4, pp. 361-381. 

Magklaras G. (2011), “Catching an undesired guest in the penguin /tmp room”, Epistolatory 
Blogspot, epistolatory.blogspot.com/2011/02/catching-undesired-guest-in-penguin-tmp.html 
(Accessed 03 March 2011) 



Proceedings of the Sixth International  
Workshop on Digital Forensics & Incident Analysis (WDFIA 2011) 
 

148 

Meier M. (2004), “A Model for the Semantics of Attack Signatures in Misuse Detection 
Systems”, K. Zhang and Y. Zheng (Eds.): ISC 2004, Springer-Verlag Berlin,Heidelberg , 
LNCS 3225, pp. 158–169. 

Mills D., Delaware U., Martin J., Burbank J., Kasch W. (2010), “Network Time Protocol 
Version 4: Protocol and Algorithms Specification”, Internet Engineering Task Force (IETF) 
Request For Comment (RFC) 5905, June 2010. 

Mockapetris P. (1987), “Domain Names – Implementation and Specification”,  Internet 
Engineering Task Force (IETF) RFC 1035, November 1987. 

Monitorware (2009), www.winsyslog.com/en/product/ (Accessed 03 March 2011) 

NSTISSAM (1999), “The Insider Threat To US Government Information Systems”, U.S. 
National Security Telecommunications And Information Systems Security Committee, 
NSTISSAM INFOSEC /1-99. 

Oracle Corporation (2010), “System Administration Guide:Security Services”, Solaris 10 
Operating System, Part No: 816–4557–19 , September 2010, pp. 559-
672,dlc.sun.com/pdf/816-4557/816-4557.pdf,  (Accessed 03 March 2011) 

Oracle MySQL portal (2010), www.mysql.com (Accessed 03 March 2011) 

Pogue C., Altheide C., Haverkos T. (2008), “Unix and Linux Forensic Analysis DVD 
Toolkit”, Syngress, 2008, ISBN: 978-1-59749-269-0. 

Probst C., Hunker J., Bishop M., Gollman D. (2009), “Countering Insider Threats”, ENISA 
Quarterly Review Vol. 5, No. 2, June 2009, pp. 13-14. 

Psacct utilities (2003), Utilities for process activity monitoring, 
linux.maruhn.com/sec/psacct.html (Accessed 03 March 2011) 

Rivest R. (1992), “The MD5 Message-Digest algorithm”, Internet Engineering Task Force 
(IETF) Request For Comment (RFC) 1321, April 1992. 

RLIKE RegExp (2008), “String Regular Expression Operator”, MySQL 5.1 Manual, Oracle 
Corporation,dev.mysql.com/doc/refman/5.1/en/regexp.html (Accessed 03 March /2011) 

Trusted BSD Project portal (2009), “OpenBSM: Open Source Basic Security Module (BSM) 
Audit Implementation”,www.trustedbsd.org/openbsm.html (Accessed 03 Match 2011) 




