
Alexander Novinskiy
Fb2, Informatik und Ingenieurwissenschaften

Frankfurt University of Applied Sciences

Frankfurt am Main, Hessen

Email: a.novinskiy@fb2.fra-uas.de

Abstract— This paper presents a view of seamless integration of
Wireless Sensor Networks and server-side applications working
with sensor data. The aim of this paper is to show a vector
toward organizing a flexible and scalable platform for educational
and research institutions or small organizations which demand
privately running ”Internet of Things” solutions when having
restricted computational resources.

I. INTRODUCTION

During the recent years the area of Internet of Things

has arisen and gained increasing attention. Being facilitated

by the use of multiple wireless network protocols such as

ZigBee, Bluetooth, wirelessHART and sensor technologies

IoT is gradually penetrating into humans lives. The inter-

connection of two concepts, Internet of Things and Wireless

Sensor Networks, made them almost interchangeable. Wireless

Sensor Networks significantly differ from traditional networks.

First, communication goes via radio based signal exchange.

Therefore, concepts such as operational frequency, number of

channels available, range and power consumption go into the

first plan when designing or choosing appropriate hardware

solutions for your network. The need to operate long in the

autonomous mode imposes multiple restrictions to hardware.

First of all it must be power efficient. That led to the dramatical

degradation of computational capabilities compared to nodes

of traditional networks with permanent power supply. Having

that limited computational power WSN-nodes are being de-

signed to be able to read sensor data, transmit and receive

signals via wireless networks. Most of the computationally

intensive tasks such as statistical analysis, numerical data

processing, decision making routines moved to the regular

networks. That made engineers think about the architectural

design of wsn-driven applications. Having omitted basic clien-

t/server approach developers and researchers came to the use

of publish/subscribe architecture. This approach allowed soft-

ware developers to integrated as many WSNs and applications

as they needed into a single communicational system, thus,

increasing scalability and simplifying development process.

Nevertheless, economical needs made researchers and software

developers seek for a better way of resources utilization and

scalability possibilities, higher level of informational security

and easier ways of software deployment. It has been 10 years

since the concept of Cloud Computing had come into life and

brought significant opportunities for developers and end-users.

This paper covers how cloud computing core technologies and

publish/subscribe communicational protocols make a suitable

platform for Internet of Things solutions.

II. PROBLEM DEFINITION

Due to the gaining popularity and promising prospects of

the Internet of Things concept many organizations, companies

and universities work in this area to deliver prototypes and/or

complete solutions for home automation [1], weather monitor-

ing, human behaviour recognition, motion tracking and many

other areas of human life. Nevertheless, research institutions

and universities have to deal with highly restricted financial,

infrastructural and therefore computational resources. Being

supported by highly volatile teams consisting of students,

research assistants and simply enthusiasts these institutions

deal with a great variety of approaches toward architectural

design which are no longer supported after the lifespan of a

project has come to its end. In order to manage risks caused

by these specifics universities and research institutions need

to be able to utilize available computational resources at its

maximum and offer a simple and unified approach toward

software design which would facilitate both software modules

communication and seamless integration of WSNs with server-

side business logic.

III. COMMUNICATIONAL SYSTEM DESIGN

A. Naive approach

As long as most data processing jobs take place on the

server side due to restrictive nature of devices comprising

WSNs it has become a major issue to find out a way to

organize data exchange between sensor nodes and server-

side applications. Since most WSN solutions are being driven

by network protocols different from those facilitated by the

TCP/IP protocol stack such as Wi-Fi the concept of a gateway

arose. Gateways are devices which establish communication

between different media and network protocols. In the most

Proceedings of the Eleventh International Network Conference (INC 2016)

103



straight-forward approach a gateway establishes a direct con-

nection with a server-side application and exchange data via a

TCP/IP socket. Server side applications accept incoming data

and store it in databases.

Nevertheless, as the amount of projects increases this ap-

proach shows its major disadvantages. Server-side applications

and corresponding clients are strongly coupled. Having es-

tablished a socket connection server-side applications bind

themself to a certain port number. In this case replication

of the server would require significant administrative efforts.

Furthermore, real-time data access is being provided for a

single application only. Could we need to add an alternative

business logic to process the same data in real-time we

might have to multicast these data among different server-side

applications. That would make software development process

more tangled and intolerant to architectural changes.

The use of databases on the other hand would destroy

advantages of real-time communication which is crucial for

many applications.

B. Publish/subscribe-based approach

The scale of distributed systems has dramatically increased

with the development of Internet and networks in general.

The publish/subscribe communicational model is dedicated

to provide a very loosely coupled form of interaction for

entities of distributed systems. The idea is that subscribers

can register their interest in a particular event or a pattern

of events, when publishers generate events on a software bus

or an event manager [2], which are being asynchronously

propagated to subscribers according to their interest. Many

industrial systems and research prototypes support this style

of interaction. Regardless the great variety of these systems

all of them aim to achieve time, space, and synchronization

decoupling of subscribers and publishers.

Fig. 1. Publish/Subscribe architecture

Communicational parties do not need to actively participate

in data exchange. In fact, publishers can send their data even

when subscribers are disconnected. And on the contrary, if

a publisher has disconnected after the message was sent,

corresponding subscribers will get notified about the event

and perhaps about the disconnection of the publisher. This

property is called time decoupling - something that we can

not achieve with pure client/server architecture. Synchroniza-

tion decoupling means that publishers are not blocked when

generating an event and subscribers can get asynchronously

notified while performing some concurrent activity. Moreover,

participants of interaction do not have to know each other.

This is called space decoupling which is achieved by the use

of communicational middleware - a service responsible for

messages redistribution.

By removing all unnecessary dependencies between com-

municational parties we can increase overall scalability of our

systems. More information about publish/subscribe communi-

cational paradigm can be found in the article ”Many faces of

publish/subscribe” [3].

Nevertheless, an IoT facilitating feasible publish/subscribe

system should meet following requirements.

• It should be lightweight in order to intercommunicate

with tiny devices comprising WSNs.

• It should be reliable, but yet rapidly operating.

• It should be simple to learn and to use and yet be

extendable. Rapid prototyping requires low entry costs

for developers, but there must be room for improvements.

• It should be supported by a wide community of software

developers from different application areas.

• It should provide security mechanisms such as authenti-

cation of clients and prevention of unauthorized access

to published data.

• It should be scalable to support high scale deployment.

C. MQTT

MQTT stands for Message Queue Telemetry Transport

and is a ”light weight” application layer communicational

protocol based on publish/subscribe model. Even though, there

is a great variety of publish/subscribe model implementations,

MQTT is definitely one of those which hold many of proper-

ties desired by IoT developers [4] [5].

The MQTT protocol relies on communicational middleware

called a message broker, which is responsible for orchestration

of communicational flows. MQTT has a modification for

smart sensor networks called MQTT-SN or MQTT-S [6]. It

introduces a concept of a gateway - a framework which, when

used, is responsible for data transfer between a smart sensor

network and a message broker. It is usually being located on

a physical gateway which is traditionally represented as a tiny

device interconnecting different media and protocols.

MQTT supports basic end-to-end quality of service. The

simplest one is the QoS level 0. It offers the best effort

service where a message is either delivered once or not at all.

Retransmission or delivery acknowledgement is not defined.

QoS level 1 ensures delivery of a message but the message

can be delivered more then once due to retransmission. QoS

level 2 is the highest one and it ensures messages are being

delivered exactly once.

MQTT supports username/password authentication and is

capable of authorizing users to provide specified access rights

to published data. Furthermore, MQTT clients can still trans-

mit encrypted payload via SSH/TLS tunnels or by means of

custom encryption [7].

MQTT is easy to use. It provides ”CONNECT” function

to connect to a message broker, ”PUBLISH” function to

publish sensor data or user controls, and ”SUBSCRIBE”

function to register clients interest in certain data. Yet, many

Proceedings of the Eleventh International Network Conference (INC 2016)

104



broker implementations provide plugins and APIs to extend

the default behaviour.

Some MQTT brokers support bridging - direct broker-to-

broker connections, which makes scaling easier and provides

higher level of flexibility.

IV. CLOUD INFRASTRUCTURE

A. Motivation

There are multiple reasons to make use of ”clouds” in

research projects and prototyping tasks. Among them are lower

cost of entry, reduced risk of IT infrastructure failure, higher

Return On Investment (ROI), quick responses to changes

on demand, rapid deployment, increased security, and ability

to focus on the core business of an organization [8]. By

making use of cloud environment one can increase efficiency

of resources utilization in comparison with the bare metal

deployment. It can be achieved via the core cloud-comprising

technology called virtualisation. Rather then having only one

bare metal machine we can have several virtual ones with a

certain amount of allocated resources. Moreover, we can save

significant amount of administrative efforts as long as cloud

infrastructure supports high level of automation.

B. General cloud architecture

A cloud infrastructure can be created based on computer

clusters with the help of special orchestrating software. Open-

Stack and Ecalyptus are examples of such systems.

Fig. 2. Eucalyptus architectural layers and advanced setup according to Z.
Pantic et al. [8]

A conventional cloud computing orchestration software

system contains modules to elicit resources usage statistics,

manage virtual instances, control available storage and provide

a user interface. Cloud computing system of that level is called

an Infrastructure as a Service and it aims to provide isolated

computational resources on demand.

1) Node controller: This module is responsible for ”in-

stances” - virtual machines with operational systems on them.

Each node with a node controller installed may have zero,

one or many simultaneously running instances with possible

different OS on them. Node Controllers communicate with the

hyper-visor running on the node, host operational system and

with the corresponding Cluster Controller. It gathers data about

utilization of available resources and about instances running

on that node. [8]

2) Cluster controller: This module gathers information

about nodes, resources available on them and about run-

ning instances by communicating with corresponding Node

Controllers. It also communicates with the Cloud Controller

propagating information about NCs to it, receiving requests

for deploying instances, and deciding about where they should

be put. It is also responsible for virtual networks available to

instances.

3) Block level storage controller: Instances on the cluster

level may need to get access to storage volumes just as any OS

be it deployed on the bare-metal or inside of virtual machine

requires storage devices to keep its files and programs on

it. A conventional IaaS platform is supposed to encapsulate

block level storage access as an abstraction from actual storage

devices. Eucalyptus does it via ATA over Ethernet (AoE)

or Internet SCSI (iSCSI) protocol to mount virtual storage

devices. [8]

4) Bucket-based storage controller: This module is respon-

sible for managing a put/get storage model (create and delete

buckets, create objects, put or get those objects from buckets).

[8]. This kind of service is being used to keep machine images

and snapshots.

5) Cloud Controller: This is the top level service module

and is an entry point to the cloud. It provisions both end-user

and administrator web interfaces. All the relevant information

about the cloud including the amount of available resources

and running instances is collected here. Based on this in-

formation a Cloud Controller arbitrates available resources,

dispatching the load to clusters.

6) Network organization: There are several ways how

network infrastructure can be organized for a cloud. The

simplest but not the safest option is to put all machines to

the public network as shown on Fig. 3. Nevertheless, this

approach imposes some inconveniences such as the need for

more public IP’s as well as for additional security measures

to protect publicly available nodes.

The alternative network configuration assumes that we have

a public network with all the internet facing services, and a

private network with internal services such as Node Controller

and Block Level Storage Controller. Having set up firewalls

both on the public and private networks entry points we can

organize a so called demilitarized zone (DMZ). [9]

C. Deployment on limited amount of resources

Nevertheless, the actual network scheme significantly de-

pends on the amount of machines available to build a network.

In the ideal case we would have hundreds of computers dis-

tributed over different network broadcast domains, comprising

a huge data centre with a vast cloudy infrastructure. In this case

the deployment scheme would be approximately like depicted

in Fig. 2.

Unfortunately, small organization and/or research groups

with limited budgets can not afford large scale data centres.

Proceedings of the Eleventh International Network Conference (INC 2016)

105



Fig. 3. Nodes connected directly to the public network according to Z. Pantic
et al. [8]

Fig. 4. Nodes on the private subnet, front-end on the public according to Z.
Pantic et al. [8]according to Z. Pantic et al. [8]

In this case we should consider deployment of cloud infras-

tructure on limited amount of resources. Theoretically, all

necessary services can be located on a single machine. But it is

highly recommended having at least two machines to isolate

computationally intensive services such as NCs from those,

which are responsible mostly for monitoring and scheduling.

There are also security considerations which dictate to split

those services (See Fig. 5).

D. Linux Containers

Linux containers is a novel technology based on the Linux

kernel addition called cgroups. Cgroups kernel module is

responsible for managing resources for groups of processes.

This allowed to make products which are capable of cre-

ating lightweigh Linux virtual machines. Linux Containers

(LXC) provide operating-system-level virtualisation which is

characterized by having multiple user-spaces when sharing a

single kernel-space. By eliminating the necessity of having

multiple kernels booted simultaneously, LXC provides better

Fig. 5. Minimal set up according to Z. Pantic et al. [8]

productivity, [10] [11] [12] achieves higher density level when

multiple Linux containers are deployed.

Linux containers gave birth to many different products such

as LXD and Docker. LXD is a Linux containers management

tool which is capable of controlling multiple container in-

stances. Docker is also based on cgroups but it doesn’t let users

to change its configuration. Once created it can not be modified

and therefore can not serve as a virtual machine. Instead,

Docker serves as an applications wrapper and facilitates rapid

deployment of software.

One of the most powerful and promising feature of LXC and

other products based on it is the Software Defined Networking

(SDN) [13] which makes it possible to connect different

containers into a single network regardless of where they are

located [14].

Fig. 6. Container Cluster Organization

This functionality makes it possible to consider a variety

of communicational system architectures, characterized by

message broker placement.

One of the obvious options is to place a message broker at

the highest level on one of the internet facing servers. This

broker would be publicly available to all clients and would be

able to create a global communicational middleware. There

are certain pitfalls related to this approach. High availability

level might cause security and reliability issues. Clients which

by chance might have gotten authentication credentials which

they must not possess could gain access to data they would

have not normally been authenticated for. For security sensitive

applications such as processing medical data it can be a

serious issue. Nevertheless, this approach can be suitable for

Proceedings of the Eleventh International Network Conference (INC 2016)

106



less critical applications and therefore shall be considered as

a simple way of organizing communicational infrastructure.

When used, one should plan a broker scaling strategy either

by means of bridging or via third party software such as load-

balancers and distributed message brokers like Apache Kafka.

Another option of organizing communicational systems

is to place a message broker onto a subnetwork level or

inside a demilitarized zone (see Figure 4) protected by an

internet facing firewall. This configuration would create a

private communicational system for services located inside a

corresponding subnetwork.

The third option is to let users place message brokers

inside their virtual machines, Linux containers (LXCs) and

application wrappers such as Docker. This highly adjustable

approach would let developers achieve the highest level of

privacy for their communicational flows. Moreover by placing

a custom message broker developers would be able to extend

brokers default functionality on demand.

There are also examples when mixed approaches may take

place. The concept of computational pipelines may need up to

three brokers installed on different levels in order to be fully

implemented.

V. PIPELINES

Most WSN and IoT applications are data centric. It means

they make use of existing network- and computing infrastruc-

ture to collect, transfer, process and store data about real world.

Data processing jobs can be generalized in a form of data

transforms. Each transform modifies incoming data according

to some business logic. Transforms may be chained together to

make a pipeline. A similar concept has been used by Google

in their public cloud solution [15].

Fig. 7. Pipelines

In computer science a pipeline is a set of data processing el-

ements connected together so that an output of one element can

be an input of another. Having implemented a set of standard

routines such as getting a mean value, generating distributions,

transforming data from one format to another, generating key-

pairs for data elements, calculating hash-values, ciphering

and/or deciphering incoming data, one can build a sequential

chain of transformations or make them work in parallel.

There are multiple ways of organizing such functionality,

but there is a need in a simple and yet flexible design for small

organizations, universities, research institutions and groups.

On Figure 7 there is a pipelines design pattern depicted. In

this case each data processing job is represented as a running

instance of a routine and/or executable, which performs a

simple transformation.

In this case brokers 1, 2 and 3 act as middleware between

the outside world represented by WSNs, data transforms,

and user applications. Even though the same functionality

could be implemented having only one broker which might

be feasible for some very tiny data aggregating centres or for

data-centric software prototyping, having three brokers helps

organize logical isolation of system components and apply

different security rules on every level.

public interface DataTransform{
DataSourceDescriptor ←↩

getOutputDataDescriptor();
void setInputDataDescriptor(←↩

DataSourceDescriptor);
void setTParameterList(TParameterList);
void addParameter(TParameter);
void cleanTParameterList();
void run();
void stop();

}

Listing 1. DataTransform Class

A certain SDK is needed in order to build and manage

pipelines. A core element of such SDK can be represented

as an abstract class or an interface containing descriptions

of major methods necessary to operate with data transforms.

Listing 1 shows an example of such interface which defines

core methods to manage data transforms such as

• void setInputDataDescriptor(DataSourceDescriptor) to

define a subscription topic and user credentials to get

authorized access to input data,

• DataSourceDescriptor getOutputDataDescriptor() to get

a corresponding data object for published data,

• void setTParameterList(TParameterList) to define a set

of parameters for the corresponding data transformation

routine be it a software module or an instance of an

executable,

• void run() and void stop() to start and terminate data

transformation routines.

In the Listing 2 there is an example of a common data trans-

form use case. First, two classes, MeanValue and NormalDis-

tribution, are being declared as an implementation of Data-

Transform interface. The corresponding objects are being

created. Second, a pipeline is built by binding MeanValue

output with NormalDistribution input via a corresponding

topic name and under common user credentials represented

as a DataSourceDescriptor object. When the pipeline is built,

both transformations comprising it are started in the order

opposite to how they are connected. This is required in order

to avoid data losses. I.e. NormalDistribution transform shall

start listening for incoming data before MeanValue transform

begins publishing them.

Proceedings of the Eleventh International Network Conference (INC 2016)

107



//create a Mean Value transformation
class MeanValue implements DataTransform{
...
}
//create a Normal Distribution ←↩

transformation
class NormalDistribution implements ←↩

DataTransform{
...
}
//create an input values source descriptor
DataSourceDescriptor mySensorVal = new ←↩

DataSourceDescriptor(username,password,←↩
topicname);

...
//create a Mean Value transform object
DataTransform meanVal = new MeanValue();
meanVal.addParameter("-samplesize 50")
meanVal.setInputDataDescriptor(sensorVal);
...
//create a Normal Distribution transform ←↩

object and link it with the MeanValue ←↩
transform

DataTransform normalDist = new ←↩
NormalDistribution();

normalDist.addParameter("-stdDev 1.5");
normalDist.setInputDataDescriptor(meanVal.←↩

getOutputDataDescriptor());
...
//launch both transforms
normalDist.run();
meanVal.run();
...
//stop both transforms
meanVal.stop();
normalDist.stop();

Listing 2. Pipeline Use-Case

Simplicity of the presented architecture favours rapid de-

velopment and deployment, encourages small teams and indi-

vidual enthusiasts to contribute to its state, and facilitates data

centric IoT projects with useful tools and infrastructure.

VI. CONCLUSION

In reply to multiple challenges encountered during IoT and

WSN related projects an analysis of modern technologies

which can be leveraged to boost effectiveness of computational

resources’ utilization and developers productivity has been

made. There has been discovered what modern data-centric

communicational protocols, such as publish/subscribe-based

MQTT, offer in order to provide higher decoupling level for

applications working with sensor data in real-time.

Having multiple projects of different levels of complexity

and duration we were also looking toward an optimal solution

for rapid software prototyping and deployment. Our aim was

to utilize existing limited hardware and network infrastructure

in such way, that multiple software developers and researchers

could make use of isolated environment to safely manage

their data and run their prototypes independently from other

participants. It was concluded that a minimal cloud infras-

tructure can provide this level of comfort when solving a

number of other problems such as rapid scaling up and down

when demanded, providing appropriate security level, and

automation of administrative tasks.

Also, a concept of computational pipelines as a chain of

data transform has been presented. It was concluded that a

corresponding SDK might be required to manage pipelines and

data transforms as well as data flows between them. A simple

implementation and usage example have been presented in

order to show suggested simplicity of pipelines and to demon-

strate how such SDK could be implemented.

These means are supposed to facilitate rapid prototyping,

development and deployment of private IoT solutions.

REFERENCES

[1] X. Li, L. Nie, S. Chen, D. Zhan, and X. Xu, “An iot service framework
for smart home: Case study on hem,” in 2015 IEEE International
Conference on Mobile Services, June 2015, pp. 438–445.

[2] D. Ajitomi, H. Kawazoe, K. Minami, and N. Esaka, “A cost-effective
method to keep availability of many cloud-connected devices,” in 2015
IEEE 8th International Conference on Cloud Computing, June 2015, pp.
1–8.

[3] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec,
“The many faces of publish/subscribe,” ACM Comput. Surv., vol. 35,
no. 2, pp. 114–131, Jun. 2003. [Online]. Available: http://doi.acm.org/
10.1145/857076.857078

[4] J. L. Espinosa-Aranda, N. Vallez, C. Sanchez-Bueno, D. Aguado-Araujo,
G. Bueno, and O. Deniz, “Pulga, a tiny open-source mqtt broker for
flexible and secure iot deployments,” in Communications and Network
Security (CNS), 2015 IEEE Conference on, Sept 2015, pp. 690–694.

[5] A. Antoni, M. Marjanovi, P. Skoir, and I. P. arko, “Comparison of
the cupus middleware and mqtt protocol for smart city services,” in
Telecommunications (ConTEL), 2015 13th International Conference on,
July 2015, pp. 1–8.

[6] U. Hunkeler, H. L. Truong, and A. Stanford-Clark, “Mqtt-s - a pub-
lish/subscribe protocol for wireless sensor networks,” in Communication
Systems Software and Middleware and Workshops, 2008. COMSWARE
2008. 3rd International Conference on, Jan 2008, pp. 791–798.

[7] D. Lee and N. Park, “Security through authentication infrastructure in
open maritime cloud,” in 2016 International Conference on Platform
Technology and Service (PlatCon), Feb 2016, pp. 1–2.

[8] Z. Pantic and M. A. Babar, “Guidelines for building a private cloud
infrastructure,” IT University of Copenhagen, Tech. Rep. TR-2012-153,
2012.

[9] A. Babar and B. Ramsey, “Tutorial: Building secure and scalable private
cloud infrastructure with open stack,” in Enterprise Distributed Object
Computing Workshop (EDOCW), 2015 IEEE 19th International, Sept
2015, pp. 166–166.

[10] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An updated
performance comparison of virtual machines and linux containers,” in
Performance Analysis of Systems and Software (ISPASS), 2015 IEEE
International Symposium on, March 2015, pp. 171–172.

[11] A. M. Joy, “Performance comparison between linux containers and vir-
tual machines,” in Computer Engineering and Applications (ICACEA),
2015 International Conference on Advances in, March 2015, pp. 342–
346.

[12] M. G. Xavier, M. V. Neves, F. D. Rossi, T. C. Ferreto, T. Lange,
and C. A. F. D. Rose, “Performance evaluation of container-based
virtualization for high performance computing environments,” in 2013
21st Euromicro International Conference on Parallel, Distributed, and
Network-Based Processing, Feb 2013, pp. 233–240.

[13] C. Costache, O. Machidon, A. Mladin, F. Sandu, and R. Bocu,
“Software-defined networking of linux containers,” in 2014 RoEduNet
Conference 13th Edition: Networking in Education and Research Joint
Event RENAM 8th Conference, Sept 2014, pp. 1–4.

[14] M. Hausenblas, Docker Networking and Service Discovery. 1005
Gravenstein Highway North, Sebastopol, CA 95472: OReilly Media,
Inc., 2016.

[15] (2016) Dataflow programming model. [Online]. Available: https:
//cloud.google.com/dataflow/model/programming-model

Proceedings of the Eleventh International Network Conference (INC 2016)

108


