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Abstract—Location Based Services (LBS) are regarded as a
major constituent of contextual computing. However, deploying
LBS for indoor localization remains still a largely unsolved prob-
lem, in particular if practical considerations like, e.g., effortless
calibration are taken into account. In our work we analyze
challenges in a university environment characterized by hundreds
of access points deployed and by heterogeneous mobile handsets
of unknown technical specifications and quality. We developed an
open architecture to deploy LBS on a campus and integrate them
with other services and useful applications to support campus life.

Index Terms—Location Based Services, Indoor Localization,
Contextual Computing, Architecture, Mobile

I. INTRODUCTION

A. Contextual Computing

The vision of contextual computing has been around

more than two decades and with the ubiquitous availability

of connected smartphones and similar devices it is slowly

becoming reality. According to the vision of Marc Weiser

“The best computer is a quiet, invisible servant” [1], the

contextual information should be obtained automatically with

no or minimal user interaction. The goal is to use different

contexts (e.g., location, time, ID) to improve forecasts and

context-sensitive services. One particularly important aspect

of contextual computing is the awareness of a user’s location.

In this paper we describe practical aspects of deploying an

infrastructure for contextual location awareness in a university’s

campus setting for indoor environments.

B. Indoor Localization Overview

For an overview on indoor localization based on WiFi,

we refer to [2]. In general, techniques either make use of

triangulation based on a theoretical propagation model or

on scene-analysis, i.e., fingerprinting. Although propagation

models look attractive from first principles, the lack of a good

theoretical foundation for indoor radio propagation yields less

than optimal results in the field. Henceforth, most applications

use fingerprinting, where the signal is matched (testing phase)

to previously recorded signals (training phase) with some

probabilistic model. One of the earliest such systems is the

Horus system, see [3], for a general overview of probabilistic

techniques see, e.g., [4]. With these techniques one can achieve

localization accuracy of 2-3 meters and 95% room classification

(depending on the room topology) in areas of high coverage

of WiFi signals, i.e., with many accessible access points for

fingerprinting, see [2] and [5]. The disadvantage of these

methods is the relatively high effort for the training phase which

requires a careful measurement that needs to be recalibrated

whenever a change of the topology happens. Furthermore,

in practical applications the testing data is usually generated

by a different handset than the ones used for training which

further complicates the analysis and reduces the accuracy.

Our approach tries to minimize these efforts by choosing

robust classification techniques [5] and generating training

data (semi-) automatically with the help of crowdsourcing, see

Section II-C1.

II. OFFERED SERVICES

A. MoCa and CoCo Project

In 2012 at Frankfurt University of Applied Sciences the

project MoCa (Mobile Campus Applications) was launched. Its

mission is to provide personalized, context-sensitive services

to students (and university staff) based on individual and

role-based requirements. To provide context information for

many services such as lecture and seminar support, an indoor

localization service was developed as a core component of the

MoCa infrastructure. Among the services voting applications

(see, e.g., Section IV-A) or social network services such as

“find-my-buddy” applications (see, e.g., Section IV-B) are

supported. One of the key requirements of the project is

(close-to) zero maintenance efforts for the operations of this

service due to resource constraints. Henceforth, any time-

consuming efforts such as, e.g., expensive calibration must

be avoided and we rather try to make use of crowdsourcing

techniques to facilitate the data generation (training) process.

For a comprehensive overview of the MoCa vision we refer

to [6]. In 2015 the Project Contextual Computing (CoCo)

was launched to investigate how contextual information could

be used to develop intelligent personalized applications. The

main focus was initially on indoor localization techniques. It

is currently investigated how to improve the accuracy and/or

performance of the existing localization approach developed by

the MoCa Project. To achieve the goals of contextual computing,

we need to aggregate data from several sources. As the project

aims to enhance the campus life at Frankfurt University of

Applied Sciences, the data can be broadly categorized as

data related to the students’ studies, location based data and
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general campus related data. For this purpose, machine learning

methods such as particle filters [7] are applied and data from

different sensors are fused.

B. Student Lifecycle Management

As the most relevant information for students using the

services relate to their studies, namely their courses, grades, and

general information about the university, the project integrates

with the Digital Campus (DC) application of the university.

The DC project is based on the Student Lifecycle Management

(SLCM) system from SAP and provides a portal for students

to keep track of their studies. It also allows the retrieval of

information required for the organization of the program, e.g.,

the timetables and room occupations. For further background

information we refer to [8].

C. Location Based Services (LBS)

To avoid unnecessary distractions we aim to filter the

presented data to only currently relevant services. Besides

the user’s identity, one of the main indicators for relevance is

the user’s current location. To provide personalized services to

students, distinct services could be available in specific rooms

at predefined times only. Thus the applications need to be

able to depend on the user’s location as they aim to provide

a good user experience in the spirit of Marc Weiser [1]. The

main source of location information is currently based on WiFi

fingerprinting. For a detailed discussion of the used approach

we refer to [5].
1) Calibration: The procedure to collect the signal strength

values for the initial calibration (described in [5]) was very

thorough, involving for example geodetic surveys, and thus very

time consuming. While this level of accuracy was necessary

for the development and validation of the used techniques,

performing similar measurements across the whole campus is

not feasible.

An additional issue is that the set of access points is

in constant flux as access points are frequently replaced,

moved, and new ones installed without or with little notice.

Recalibrating the system therefore has to be reasonably simple

and autonomous, e.g., via constant recalibration based on

some form of crowdsourced data. To this end, the SmartClick

application (described in Section IV-A) enables the collection

of crowdsourced data in a natural and non-intrusive manner.
2) Extensibility: Our research group aims to refine the

localization accuracy and therefore actively participates and

supports research to improve the classification results. A

recently concluded project attempted to use sensors built

into modern smartphones to devise additional approaches to

determine the location in a building. In [9] magnetometers

were used to measure magnetic field vectors. These provide

patterns which allow to calculate the position of the device

inside the building. The first results look promising and are

currently investigated as part of the project CoCo.

D. External Services

In addition to the services mentioned above we want to

provide additional information relevant to the campus life.

Many of these are not under control of the universities IT

department, contain semi- or even unstructured data, and

henceforth different techniques to integrate them into the

ecosystem (e.g., web scraping) have to be used. A popular

example is the menu of the refectory on the campus, which

naturally is of interest for students, see Section IV-C.

III. ARCHITECTURE AND INFRASTRUCTURE

Fig. 1. Moca Architecture – Interaction between components

Fig. 2. Location Service – Design Overview

A core ingredient of the MoCa infrastructure is the SAP

Mobile Platform (SAP Mobile Platform SDK V. 3.10, SAP Mo-

bile Platform Server V. 3.0.10.0 and Apache Cordova V. 5.1.1),

representing the foundation for our mobile applications. In

addition we also maintain several specialized services, which

provide specific features for (planned) applications.

For all services other than the SAP Mobile Platform

we follow an open source and open protocol strategy. For

example, the Location Service which performs the fingerprint

classification, is build with Java and R, see below. Another

example is the chat functionality of the SmartBuddy application
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see Section IV. The chat is based on the Extensible Messaging
and Presence Protocol (XMPP) provided by OpenFire.

Figures 1 and 2 provide an overview on MoCa’s overall

architecture and design. The details of the data-flow requesting

the current position are depicted in Figure 3.

A. SAP Mobile Platform

To make the DC data available to students on their mobile

devices, SAP offers the SAP Mobile Platform (SMP) providing

the following services:

1) Model driven data access to SAP backend of DC

2) Model driven data access to other backends

3) Model driven data transformation

4) Device registration

5) User authentication and authorization

6) App provisioning

On the server side, SMP offers an unified interface for

the SAP based backend infrastructure. We make use of a web

service access to the room management service provided by the

DC which provides data such as a lecture to room (and lecturer)

mapping for each semester. This association is then used by

other services such as, e.g., the SmartClick Application, see

Section IV-A below. Clients can leverage Open Data Protocol
(OData) based RESTful web services to retrieve and publish

information. As OData is an open standard [10] and based on

regular HTTP, it is a good fit to our use case.

To develop mobile applications interacting with SMP, we

make use of their support for Apache Cordova based Hybrid

Web Container applications. These provide a runtime which

manages application updates, provisioning, user management,

etc.

On top of the SMP runtime mobile applications are developed

using web technologies, i.e., JavaScript, and HTML5. This

allows us to minimize native developments and therefore

helps to develop mostly platform independent applications,

available on devices running iOS, Android, Windows Phone

and BlackBerry. This reduces the development – and more

importantly – the operations costs. Henceforth, the SMP

architecture [11] and our development approach [12] allow us

to support all major mobile platforms in an efficient manner.

However, for certain services access to device specific

interfaces is required. For example, we need to access the WiFi

radio to scan for available access points. In order to support

this requirement, we developed a native library and exposed

it to the Web Container. Thus, native, device- or OS-specific

development is minimized and confined.

In addition to the mobile platforms, it is also easily possible

to test and deploy the SMP based application as a website.

When running in the browser it is of course impossible to make

use of native libraries and some of the more advanced SMP

runtime features. Nonetheless, the major functionality can be

seamlessly tested in this manner.

Overall, due to using the SAP SMP framework, we are able

to develop applications targeting all major mobile operating

systems while keeping platform specific code to an absolute

minimum. Platform specific testing is obviously still required

and inherent restrictions make complete feature parity impossi-

ble. It nevertheless allows us to keep a unified release schedule,

while offering applications with mostly identical feature sets

and user interfaces.

B. Location Service

As it is not feasible to perform the classification locally on the

user’s phone, we chose a centralized approach. This minimizes

the work done on the client device and thus optimizes its

battery usage. It also avoids the need to distribute and update

the data sets required to perform the calculations.

We therefore decided to make the Location Service available

through a stateless REST service. To decouple it from the

largely unrelated SAP infrastructure, we decided to provide a

simple REST web service instead of making it available via

OData and SMP.

This has several advantages for us. It allows students to

access the service for arbitrary projects, without having to get

familiar with OData. The service can also be made available

to a wider audience via ad-hoc services, e.g., to use it during

external events, like a conference.

The model used to classify the fingerprints and the sur-

rounding functionality is implemented in R. This choice is

based on the advantages of an interpreted language suitable

for agile methodologies in a research context and the immense

popularity of the R language and its ecosystem. With “more

than 2 million users” [13] and several thousand open source

packages maintained by the community [14], R offers support

for most machine learning and data analysis tasks.

In addition, R offers straightforward interoperability with

other languages, mainly via bindings for native, performance

optimized libraries implementing the underlying functionality.

This offsets most performance losses that incur from using R

instead of a compiled language like, e.g., C++ or Fortran.

Communication between the REST web service and the R

application is realized with the help of Rserve. It acts as a

server, making the R process available to clients, allowing

them to remotely execute R commands and retrieve the results.

Rserve was originally introduced in [15] and is widely used,

e.g., in products like SAP HANA [16].
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This approach allows us to have a simple Java based REST

web service acting as the front-end. It maintains a list of

established connections to Rserve processes and forwards

requests to said worker processes which perform the actual

classification.

As Rserve communicates over TCP/IP, worker nodes can be

distributed across several servers. This allows us to distribute

the computationally expensive operations across several ma-

chines while keeping the overall architecture simple. Using the

stateless REST web service as a front-end thus allows us to

adjust the number of worker nodes according to user demand

without service interruptions for the clients. This also allows

us to seamlessly change the underlying calculations, e.g., to

refine the classification algorithm, without changes to client

applications.

To determine their current location, clients send WiFi

fingerprints to our service. Said fingerprints contain information

about all access points in range, namely their basic service
set identification (BSSID), service set identification (SSID)

as well as the measured signal strength (RSS) values. In

addition to performing the classification, the service stores

the fingerprint data and calculated location. No personal

information is recorded whatsoever, i.e., the usage of the service

is anonymous.

As long as the installed access points only change gradually,

e.g., broken ones are replaced instead of abrupt, larger changes

(say, all access points are upgraded to newer hardware), we

should be able to continuously recalibrate the system based on

the growing data set. This allows us to automatically recognize

and incorporate changes in the WiFi infrastructure and adjust

the model accordingly. This also avoids the manual recalibration

of the system. In the past 24 months the university has replaced

roughly 30% of its access points in the computer science

building. Although the system was not fully deployed in its

current stage at the time, the system could be operated as if

it was already automated and we could verify that it would

cope with the changes without loosing accuracy. As described

in [5], our systems using Support Vector Machines (SVM) for

classification yields an average classification error of better than

95% and a mean error of less than 2.5− 3.0 meters which is

compatible with best results published in the literature, see [5]

for details.

To further improve localization accuracy, state dependent

methods can help, i.e., methods that do not just analyze

the current signals but rather the history of sensor and

location data. Sequential Monte Carlo methods such as particle

filtering enable to solve the otherwise intractable bayesian filter

recursions. An example of a simulation is shown in Figure 4. It

depicts a random walk of a potential user of our system, where

the dots on the connected line depict the walk and the free

(blue) dots represent the particles. The particles approximating

the actual user position are clustered close to the right position,

i.e., close to ground truth. The errors are comparable to the

results obtained via SVM described in the previous section,

however, particle filters can fuse other sensor data in a more

meaningful manner. Research is currently in progress to further

improve the localization accuracy. One approach is to use

the log-normal shadowing model which represents the signal

strength decrease dependent on the distance.

Another approach is to assess the viability of using the

strength of the magnetic field vector of the earth’s magnetic

field as well as data from other (inertial) sensors (accelerometer,

gyroscope) and combine this information with WiFi signals.

Recently [17] it was shown that combining (inertial) sensors

with WiFi data using sensor fusion with Kalman filters can

further improve WiFi accuracy by as much as 0.5 meters.

Thus, for the future we plan to combine this approach with

our existing WiFi based location techniques using SVM and

particle filters.
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Fig. 4. Particle Filter

IV. APPLICATIONS

A. SmartClick

SmartClick is an audience response system (ARS) developed

for classroom usage. It helps lecturers to keep track of how

well students understand the study material at hand by taking

short surveys during the lectures.

By incorporating contextual information, we aim to minimize

the overhead caused by using non specialized hardware, namely

the students’ smartphones, as responders. The application uses

the current date, time, and the users location to automatically

determine which lecture the user currently attends. This allows

us to only display questions relevant to the student. The

automatic preselection minimizes the user interaction required

to participate in the quiz and consequentially its duration.

Results are available both in the mobile application (Fig. 5a)

and on the courses website. The mobile application also allows

to correct wrong localization results by manually selecting

a room. The corrected data point can then be sent back to
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(a) SmartClick (b) SmartMensa

Fig. 5. SmartClick and SmartMensa App

the server, allowing us to crowdsource the collection of new

measurements.

SmartClick also provides a web interface. Lecturers use

the website to create and maintain questions while students

can access results of already concluded polls, allowing them

to revisit past topics. The web interface is implemented as

a plugin for the Moodle [18] learning platform. Moodle is a

widely used online learning platform, providing access to course

related information and materials over the Internet. Integrating

our application into the e-learning platform ensures that the

course specific information (e.g., time, location, start date, and

end date) used by our system is available and up to date,

avoiding any manual maintenance. This also applies to user

account management. All students as well as staff members

are registered on the Moodle platform and use it to sign up for

lectures they attend. As a plugin, our application automatically

uses the course and user information already maintained in

Moodle as well as its security infrastructure. This architecture

additionally ensures that potential users are already familiar

with the application and its user interface.

Integrating parts of our infrastructure into existing and widely

used systems, here the online learning platform, helps with

minimizing the effort required to introduce as well as to

maintain an audience response system in classroom settings.

B. SmartBuddy

SmartBuddy (Figures 6 and 7) is a “find-my-buddy” ap-

plication locating “buddies” automatically on the campus.

Aimed at students, it helps to organize study groups and

keeping in touch with other students without the necessity

to exchange personal information (e.g., mobile phone number,

email address). Students need to create an account to use the

application. Once logged in they can create and join groups. To

offer more privacy, groups can be password protected. Existing

members then have to explicitly invite interested users by

sharing the secret password allowing to join the group. Each

group has an associated chat room. As the applications intends

to facilitate studying in groups, it also allows users to share their

Fig. 6. SmartBuddy App – The current locations of your friends

Fig. 7. SmartBuddy App – Chat functionality

current location. This can be used by study groups, helping with

the coordination of (spontaneous) encounters on the campus.

C. SmartMensa

SmartMensa is an application for students and staff who

intend to eat at the university refectory. It displays the

current menu, together with recommendations. The ratings

are crowdsourced, collected from other users who use the

application (Fig. 5b) to anonymously rate the food.

Whilst mainly intended for fun, it serves as an opportunity

to experiment with and test the infrastructure. It is useful for all

people frequenting the campus. It therefore also helps to bring

more users into our application ecosystem and to generate

additional feedback.

V. OPERATIONS

The Location Service went live in early 2015. During

the operations period, several changes to the access point

infrastructure took place. Figure 8 shows the results of cross

validating the data of six selected handsets partitioned into

15 randomly chosen subsets for training and validation versus

training data of 60 combinations of only two handsets and

tested against a third one. The statistical aggregates of the
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error measures as described in [5] are depicted in Table I. As

one concludes from the tabular data, using only two handsets

yields a much worse median classification error as compared

to training data with 6 handsets. Furthermore, the variance

as depicted in Figure 8 is much higher and renders some

tests practically useless (median error bigger than 50%). This

demonstrates one of the practical difficulties in training the

system. In our case the major contribution to the data being

worse than the one collected in [5] stems from two particular

devices that show very different RSS characteristics compared

to the others. We found empirically that training with at least

half a dozen devices from different OEMs is advisable to avoid

strong dependency on single device types. Recently we have

started to use crowdsourcing to collect enough data from a large

set of mobiles, thus helping to mitigate device dependency on

a continuous basis.
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TABLE I
PERFORMANCE – TWO VS. ONE AND CROSS VALIDATION ALL

median(e) max(e) median(m) min(p) min(r) min(f)

2 vs 1 0.145 0.177 NA 0.694 0.446 0.626
Cross-Val 0.038 0.052 NA 0.857 0.744 0.835

As we expand the coverage of the rooms, we noticed another

phenomenon, namely the incorrect classification of rooms

between different floors, see, e.g., the confusion matrix, Table II

mixing rooms 131 (first floor) and 401 (fourth floor). This could

TABLE II
CONFUSION MATRIX

129 130 131 234 235 332 333 401

129 33 0 0 0 0 0 0 0
130 1 38 1 0 0 0 0 0
131 0 0 40 0 0 0 0 0
234 0 0 0 31 0 0 0 0
235 0 0 0 0 25 0 0 0
332 0 0 0 0 0 45 0 0
333 1 0 0 0 0 4 44 0
401 0 0 7 0 0 0 0 75

be the result of the open architecture of the computer science

building (e.g., atrium, and galleries). These type of errors are

easily taken care of by state-based machine learning techniques

such as particle filters investigated in the CoCo project.

VI. CONCLUSION

We have demonstrated the feasibility of SMP for agile

development and integrating contextual services via REST.

We have also shown the practical feasibility of a location based

service to support campus services with room accuracy.

For future research we intend to further improve accuracy by

better algorithms and sensor fusion. Furthermore, in addition

we will integrate sensor data from other sources to improve

contextual computing and will make use of reality-mining

techniques to improve services.
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