
Proceedings of the Fourth International
Workshop on Digital Forensics & Incident Analysis (WDFIA 2009)

115

Reverse-Wipe Data on a Storage Medium

G. Fragkos

Faculty of Advanced Technology, University of Glamorgan, Wales, UK
e-mail: gfragkos@glam.ac.uk

Abstract

This experimental study suggests an alternative method of data deletion which can be
considered secure up to an acceptable level for most purposes while maintaining anti-forensics
characteristics. It is a quick and “dirty” solution to remove data from a storage medium while
achieving to confuse the investigator about the contents of the i.e. the hard disk. More
specifically, working upon the file system of the storage medium it fills all the empty space
leaving no slack space available. Consequently, this approach could provide an insight today,
as in how it could be used as an anti-forensics method tomorrow.

Keywords

Computer Forensics, Anti-Forensics, Data Wiping, File Headers

1. Introduction

The capacity of the storage mediums is increasing rapidly. The cost is low and that
makes them suitable for most purposes. Data remaining on storage mediums is a
serious issue (Jones, 2006) especially when they are needed to be disposed. Several
types of data wipe software are available for secure erase of the contents. However,
some times the whole process costs time and money. In this experimental study it is
proposed to use another approach slightly different from the know ones. Knowing
how time consuming a three times data wipe can be, it is proposed to perform
overwrite, based on the file system of the storage medium. In other words, in the
same amount of time or faster sometimes a complete overwrite of the minimum
cluster size set by the Operating System can be achieved. Considering within the
equation the fact that instead of the typical overwrites, with a standard value like
0xA, a random value is used which is part of a random valid header or part of valid
random file.

2. Working with the file system’s structure

From forensics point of view there are various methods to wipe clean the remaining
data on a storage medium. There are quick, slow and very slow methods according to
the quality of the results you are after. The most advanced and secure wiping method
is the use the US Department of Defence (DoD) data wiping process which suggests
that a device needs to be overwritten seven times before the original data can be
considered un recoverable (Gutmann, 1996). The data wiping process starts from the
beginning of the storage device and continues all the way up to the last bit. Each

Proceedings of the Fourth International
Workshop on Digital Forensics & Incident Analysis (WDFIA 2009)

116

individual byte is overwritten with zeros, then with some random value and again
with zeros.

This process can be considered secure enough when it passes through the whole
device about 3-4 times. All this process is very time consuming depending on the
capacity of the device. Moreover, this approach will erase everything from the
device, along with any file system present and of course requires advanced technical
knowledge in order to be sure it is done correctly and none of any other
disk/partitions that need to be kept unharmed, have been wiped clean accidentally.

Depending on the file system’s type used on each one of these storage devices, there
is a minimum allocation unit (considering a block of predefined blank space named
as cluster) which will be used to store data. If the volume of the data needs to be
stored is less than the capacity of that cluster, then the space left within this cluster is
remaining unused (known as slack space). Obviously, if the volume of the data to be
stored exceeds the capacity of a cluster, then the first cluster will be filled in
completely and any data remaining will be store into the next one.

Just a few really large files can easily occupy (mark the storage medium as full) the
whole available storage space on the device. In reality there is some more space
available on the device but it is actually reserved for another use. Depending on the
capacity of the storage medium there is also space allocated specifically for storing
the filenames of each file stored. Modern Operating Systems support long filenames
up to 255 characters long including any file extensions might need to be used. The
reserved space for storing filenames on a medium is relative to the overall storage
capacity of the device. Thus, using 255 character long filenames for each file will fill
in your index table leaving no space for more files to be written on the device.
Eventually, the empty space of your device will be marked as unavailable even
though the data stored on it is far more less than the actual capacity of the device.

Overwriting in full both domains of a storage device (data domain and the index
table domain) relies on the understanding the file system’s design principles and how
we can take advantage of it. Consequently, the number of files to be created along
with the length of filenames to be used can be calculated in advance.

3. Understanding the process

In order to avoid occupying the device’s capacity either with just large files by
leaving empty space on the index table side, or either with long filenames that will
leave most of the device’s storage space unavailable, the appropriate number
between files to be stored and their relative filename’s length need to calculated. By
dividing the device’s capacity with the cluster size used by its file system the number
of files that can be stored on this device can be calculated. The OS is responsible of
performing all the required operations in order for a file to be written on a device. As
mentioned in section II, the appropriate file size in order to force the operating
system to leave no slack space available, is to create files which are exactly the same
in capacity as the cluster size used on the storing device. If the calculated number of

Proceedings of the Fourth International
Workshop on Digital Forensics & Incident Analysis (WDFIA 2009)

117

files to be created is a three digits number (i.e. 784), then the correct filename length
to be used for these number of files must not exceed or be less than that length.
Effectively, starting with a filename like 001, for the first file, and increasing it
sequentially, the storage device will end up with 784 files named respectively.

This approach is going to leave no slack space available for each cluster, and the
index table allocated for filenames will be totally used without affecting the actual
number of files that the device can actually store. The number of files that can be
stored in the root partition or in any of the subdirectories of a storage device, for
example a hard disk that has NTFS file system, is 65535 files. Thus, if more files
need to be stored, then a subdirectory or subdirectories need to be created by
subtracting two files in order to create one directory.

4. Data Wiping and Anti-Forensics

The idea described in this paper is a ‘quick and dirty’ approach. It can maintain the
file system structure along with any data that must not be deleted. It works with the
Operating System thus it can be performed at run time without effecting or
disturbing the work it is been done on the same system. It will only overwrite the
blank and slack space remaining on the disk without altering/deleting any data that
need to be kept. It does not require direct access to the hard disk allocation table, thus
no administrative privileged required, neither installations. There is no need to buy
any special commercial product that uses some kind of advanced algorithm in order
to perform this basic task. The source code is very simple and can remain open
source for further expansion the codes capabilities. In overall, it is faster than using
an advance method of wiping a storage device.

The main advantage of this ‘reverse wiping’ method is that each file generated in
order to be written, has a cluster size of data available to be manipulated. This block
of available data, instead of being zeros like most of the applications do, can be
altered to the most well known file headers. File headers that point to picture files,
document files, any type of files that most computers uses these days but containing
no actual data within them. Consequently, when an investigator will try analyse the
contents of this particular device instead of finding zeros everywhere and being easy
to spot any data remains, he/she can be get really frustrated when a search for picture
files return a few thousand hits, that in reality contain no valid data. In this case it is
easier to hide or avoid detection of any real data that have been left of the device
accidentally.

The proof of concept application developed was a very simple one. The source code
is just a few lines [Fig 1] which prove the simplicity of the idea. The application’s
input requires knowing in advance the path to the intended drive to be wiped
(overwritten), the cluster size of the file system used, the number of characters to use
in order to generate the appropriate filename length and finally the value to be
written throughout the cluster size data block.

Proceedings of the Fourth International
Workshop on Digital Forensics & Incident Analysis (WDFIA 2009)

118

#!/usr/bin/python
#G.Fragkos 2007
TARGET_LOCATION="I:\\" # Set Target Drive Letter
BYTES=1024*4 # Cluster Size in KB
FILENAME_LENGTH=6 # Filename Length
CHARACTER="0" # Overwrite using this character

Initialising Variables
enumList=['bytes', 'KB', 'MB', 'GB', 'TB', 'PB', 'EB', 'ZB', 'YB']
COUNTA=1
loopcounter=0
try:
 while True:
 FILENAME=(FILENAME_LENGTH-len(str(COUNTA)))*CHARACTER+str(COUNTA)
 DATA=CHARACTER*BYTES
 PATH=TARGET_LOCATION + FILENAME
 print COUNTA
 f=open(PATH, 'w')
 f.write(DATA)
 COUNTA+=1
except IOError:
 print "!Disk Full"
 COUNTA-=1
 CSIZE=BYTES*COUNTA
 while CSIZE % 1024 == 0 or CSIZE > 1024:
 CSIZE = CSIZE / 1024
 loopcounter+=1
 print "R-Wiped Using: " + str(COUNTA) + " files, " + str(CSIZE) + enumList[loopcounter] + "(" +
str(BYTES*COUNTA) + " bytes)"

Figure 1: Source Code

Instead of using a specific character repeatedly, which in this example is zero, a
whole file header can be used in order to overwrite existing data. Trying to wipe the
data contained on a 32 MB removable storage device using the DoD method in
comparison with the proposed method, proved that the latter was scientifically faster
and of course easier to be performed even from the most inexperienced user. On the
other hand, the DoD method was undoubtedly the one which totally erased data to an
unrecoverable state. Even though the proposed method is not a match to the DoD
approach managed to overwrite most of the disk’s space, leaving almost no data
recoverable from previous uses. Mainly, the data that was able to be identified was
the file system information. The use of random values was able to scramble the
contents of the device and demonstrated how complicated can get, for a forensic
analyst, to locate data that were originated from previous existing data. In a real life
example it would be very difficult for a forensics analyst to investigate a million files
(picture files) which contain randomly generated colorful pictures which actually
mean nothing and within this vast amount of data try to identify any valid data
remains. Extending this process to use a wide range of different file types becomes
exponentially difficult to investigate.

5. Conclusions

Tests were performed in order to conclude if the proposed idea has any potential in
the area of forensics and anti-forensics. At this stage of the experiment, the outcome
can be considered successful. The results proved that the original data were erased
through overwriting, up to an acceptable level, as no sensitive, profiling or back
tracing data could be recovered afterwards. Furthermore, speed-wise, even though
this method cannot be considered as a sophisticated one, was able to perform well
and efficiently. The method, as it stands at the moment, needs to be expanded and
further amendments need to be included to the functionality. Calculating
automatically the appropriate variable values for different file systems is essential.
Finally, as this idea is still in an experimental state, further tests need to take place

Proceedings of the Fourth International
Workshop on Digital Forensics & Incident Analysis (WDFIA 2009)

119

which will include different types of storage devices, taking under consideration
performance results when dealing with high capacity devices.

6. References

Gutmann P., 1996, Secure Deletion of Data from Magnetic and Solid-State Memory, Sixth
USENIX Security Symposium Proceedings, San Jose, California, July 22-25

Jones A., Valli C., Sutherland I., Thomas P., 2006, An Analysis of Information Remaining on
Disks offered for sale on the second hand market, Journal of Digital Forensics, Security and
Law, Vol. 1(3).

