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Abstract 

This paper presents a modelling and simulation framework for analysing Access Control List 
(ACL) implementation on Internet devices.  It uses the established modelling/simulation 
techniques of abstraction and simplification to isolate the essential components of the system 
from peripheral issues.  As a case study, the viability of a simple real-time optimisation 
technique is demonstrated. 
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1. Introduction: Modelling Internet Traffic 

Internet traffic flow has complex characteristics, both in scale and structure.  
Modelling and simulating traffic can, consequently, be troublesome.  However, in 
certain circumstances, not all traffic features are relevant to the simulation and a 
degree of simplification is appropriate.  This paper considers a model of Internet 
traffic, as sequences of packets, applied to the simulation of the behaviour of Access 
Control Lists (ACLs) using different implementations.  The nature and structure of 
ACLs are described, together with the packets they process.  The essential elements 
of the simulation are identified and relevant parameters are introduced.  An extensive 
case study with results is given in conclusion. 

There has been substantial discussion of the nature of Internet traffic over the years, 
(Paxson and Floyd, 1995; Paxson, 1999) for example.  One of the few coherent 
conclusions, albeit it an obvious one, is that Internet traffic is very complex indeed.  
Analysing traffic on a network over time shows both a level of self-similarity 
(Leyland et al., 1994; Rezaul and Grout, 2007) and an effective randomness (Dang et 
al., 1999; Jerkins and Wang, 1999) on unpredictable scales.  This makes the effective 
modelling and simulation of network activity extremely difficult in any general form.  
It is true that some fairly sophisticated network simulators exist, (ns-2, 2007; cnet, 
2007; Cisco, 2007) for example, but the power of these tools lies primarily in their 
scale rather than their fine-tuning.  Although most network protocols are supported, 
for example, it is still hard to imitate the subtleties of real network traffic under 
changing conditions.  None are particularly straightforward to use and, to date, 
successful simulations using such tools have tended to be small (Tan et al., 2006; 
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Zhu and Roy, 2004).  Also, although sources of ‘real’ network traffic for 
experimentation are to be found (Kos et al., 2003; Abilene, 2007), they are not 
numerous and, beyond a basic description of form (time, place, traffic type, etc.) do 
not offer obvious means of identifying traffic characteristics (distribution, 
randomness, stability, self-similarity, etc.).  Results from network simulations might 
reasonably be expected to vary with these traffic characteristics and, without such 
knowledge, will have limited value. 

However, a completely generic network model is often unnecessary.  Depending 
upon the purpose of the simulation, certain traffic characteristics will be significant; 
others not.  Dispensing with the unnecessary network characteristics can often 
simplify the traffic model and allow relevant parameters to be used to fine-tune the 
simulation as required.  This paper is concerned with the implementation of Internet 
traffic filters, otherwise know as Access Control Lists (or ACLs).  An ACL processes 
traffic as a sequence of packets, and is itself a sequence of rules, as described in 
sections 2 and 3.  Modelling the interaction of two such sequences proves to be a 
comparatively simple process in which most characteristics of the packets and rules 
may be ignored. 

The remainder of the paper is organised as follows:  Section 2 introduces the 
essential role and behaviour of ACLs in simple, practical terms.  This intuitive model 
is then extended and formalised in sections 3 and 4.  Section 3 derives an appropriate 
model for the rules of an ACL processing a sequence of packets before section 4 
introduces the relevant traffic characteristics in this environment, which prove to be 
few.  Some parameters then depend on the method of ACL implementation. This is 
considered generically in section 5 and illustrated through an example in section 6.  
Section 7 concludes briefly. 

2. An Overview of ACL Purpose and Structure 

We begin with a very brief description of context.  An internetwork (internet) is a 
‘network of networks’.  (The Internet, with which we are familiar, is conventionally 
written with a capital.)  Key devices, known as routers, switch, or route, 
communications traffic, usually in the form of discrete packets, between networks.  
The primary function of a router is to forward each packet to the most suitable 
device, typically another router, at each step of the journey.  However, a vital 
secondary role is to consider whether a given packet should be passed at all, 
according to a set of tests, or rules, against which it is matched. 

A typical rule, in the syntax of the Cisco Internetwork Operating System (IOS) 
(Colton, 2002), is 
    access-list 101 deny icmp any 10.0.0.0 0.255.255.255 echo-reply 

which states that ICMP echo-reply packets from any source to the network 
10.0.0.0 are to be blocked at this point.  The first part of the rule simply assigns it 
to access list  101 (and may be ignored when discussing single lists in isolation.). 
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An access list, or Access Control List (ACL), is then a sequence of such rules 
designed to implement a given objective or set of objectives.  ACLs can be used for 
security purposes, simply to pass or block packets, or as filters for more sophisticated 
policies such as traffic shaping, address translation, queuing or encryption 
(Syngress, 2002).  A packet may be matched against several ACLs on a single router 
and many more on its complete journey from source to destination.  Inefficiently 
implemented ACLs can add significantly to packet delay and even small ACLs will 
contribute to this latency simply by their aggregation across several routers. 

An example of a complete ACL is given in Figure 1.  Other than the ACL 
assignment, a rule may consist of up to five parts: the permit or deny type, the 
protocol, a source address, destination address and a flag function (as in the echo-
reply parameter above) for fine-tuning.  Each parameter may be a single value or a 
range of allowable matches.  For example, the any parameter above matches all 
source addresses whilst the 0.255.255.255 parameter matches destination 
addresses in the 10.0.0.0 network.  The absence of any term, such as an address, 
a protocol or flag, indicates the rule will match a packet with any such values – 
provided those fields that are present are matched. 

access-list 101 permit tcp 192.168.212.0 0.0.0.255 10.0.0.0 0.255.255.255 eq telnet
access-list 101 permit tcp 192.168.212.0 0.0.0.255 10.0.0.0 0.255.255.255 eq ftp
access-list 101 permit tcp 192.168.212.0 0.0.0.255 10.0.0.0 0.255.255.255 eq http
access-list 101 deny ip 192.168.212.0 0.0.0.255 10.0.0.0 0.255.255.255
access-list 101 permit icmp any 10.0.0.0 0.255.255.255 administratively-prohibited
access-list 101 permit icmp any 10.0.0.0 0.255.255.255 echo-reply
access-list 101 permit icmp any 10.0.0.0 0.255.255.255 packet-too-big
access-list 101 permit icmp any 10.0.0.0 0.255.255.255 time-exceeded
access-list 101 permit icmp any 10.0.0.0 0.255.255.255 unreachable
access-list 101 permit icmp 172.16.20.0 0.0.255.255
access-list 101 deny icmp any any
access-list 101 permit ip 202.33.42.0 0.0.0.255 any
access-list 101 permit ip 202.33.73.0 0.0.0.255 any
access-list 101 permit ip 202.33.48.0 0.0.0.255 any
access-list 101 permit ip 202.33.75.0 0.0.0.255 any
access-list 101 deny ip 202.33.0.0 0.0.255.255 any
access-list 101 deny tcp 210.120.122.0 0.0.0.255 10.2.2.0 0.255.255.255 eq www
access-list 101 deny tcp 210.120.183.0 0.0.0.255 10.2.2.0 0.255.255.255 eq www
access-list 101 deny tcp 210.120.114.0 0.0.0.255 10.2.2.0 0.255.255.255 eq www
access-list 101 deny tcp 210.120.175.0 0.0.0.255 10.2.2.0 0.255.255.255 eq www
access-list 101 deny tcp 210.120.136.0 0.0.0.255 10.2.2.0 0.255.255.255 eq www
access-list 101 deny tcp 210.120.177.0 0.0.0.255 10.2.2.0 0.255.255.255 eq www
access-list 101 permit tcp any 10.2.2.0 0.255.255.255 eq www
access-list 101 deny tcp any any eq www
access-list 101 permit tcp any any
access-list 101 deny ip 195.10.45.0 0.0.0.255 any
access-list 101 permit ip any any
{access-list 101 deny all} {implicit}

 
Figure 1:  A typical Access Control List (ACL) 

The interpretation of an ACL is that its rules are considered as being processed in 
sequential order from the top.  That is, each incoming packet is tested against the 
first rule; if it matches, it is passed or blocked accordingly and no further rules are 
considered; otherwise it is tested against the second rule, and so on.  There is an 
implicit  deny all rule at the end of each ACL to block all packets not otherwise 
matched. 
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There are three further points to make in overview.  Firstly, this model of an ACL as 
a sequence of rules, considered in order, is only a question of interpretation: it 
should not be assumed that the ACL is actually processed sequentially within the 
device hardware or software (see section 5).  Secondly, taking this interpretation of 
ACL structure, the order of the rules is crucial: an inherent dependency between rules 
prohibits arbitrary reordering.  For example, in Figure 2, an IP packet from the 
network 192.168.16.0 to the network 10.0.0.0 will match both rules shown.  
The packet will be passed in 2(a) but blocked in 2(b).  Clearly then, rules may not be 
reordered if this changes the underlying intention of the policy.  Thirdly, not all rules 
are equally likely to match packets: rules with larger parameter ranges (or indeed 
absent parameters) may match more packets and rule hit-rate will vary among them.  
Also, different rules will become more or less significant as traffic (packet) 
characteristics change so these same hit-rates will be dynamic.  These concepts are 
developed in the next section and used in the case study in section 6. 

: :
: :

access-list 102 permit ip 192.168.16.0 0.0.0.255 any
: :
: :

access-list 102 deny ip any 10.0.0.0 0.255.255.255
: :
: :

{access-list 102 deny all} {implicit}

: :
: :

access-list 102 deny ip any 10.0.0.0 0.255.255.255
: :
: :

access-list 102 permit ip 192.168.16.0 0.0.0.255 any
: :
: :

{access-list 102 deny all} {implicit}

Access list 2(b)

Access list 2(a)

 
Figure 2:  Dependent rules 

3. Modelling ACL Structure 

Where appropriate in this paper, abbreviations are used as follows: ∃,  ‘there is’ or 
‘there exists’; ∀, ‘for all’ or ‘for every’; ∧, ‘and’; ⇔, ‘if and only if’; and →, ‘such 
that’.  We also use the terms format and protocol in a precise manner: format refers 
to the layout of packets and rules in any given system whereas protocol implies a 
data/traffic type that may be identified within it.  Then define A* to be the set of all 
addresses available within a given system, define B* to be the set of all protocols 
recognised by the system and define F* = {0, 1}w to be the set of w flag vectors ({0, 
1} w-tuples acting on B*) valid for the system.  For completeness, X*  represents the 
set of payloads. 
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3.1. Packets, rules and policies 

For a given format, a packet, pk = (Sak, Dak, bk, fk, Xk), is defined by its constituents: 
Sak ∈ A*, the source address; Dak ∈ A*, the destination address; bk ∈ B*, the 
protocol; fk ∈ F*, the flags vector and Xk ∈ X*, the payload.  A rule, ri = (ti, SAi, DAi, 
Bi, σi), consists of: a type, ti ∈ {permit, deny}, SAi ⊆ A*:  the source range, DAi ⊆ A*:  
the destination range, Bi ⊆ B*:  the protocol range, and a flags predicate, σi: F* a 
{true, false}.  Only ti is a required component in all syntaxes.  If any other 
components are absent then SAi = A*, DAi = A*, Bi = B* or σi ≡ true by default. 

A packet, pk, matches a rule, ri (for which we write pk ∇ ri), if its addresses and 
protocols are within the range of the rule and if its flags vector satisfies the rule’s 
flags predicate.  That is, 

 pk ∇ ri ⇔ (Sak ∈ SAi) ∧ (Dak ∈ DAi) ∧ (bk ∈ Bi) ∧ σi (fk),    (1) 

in which case the packet will be permitted or denied according to ti. 

A policy, Z = [r1, r2, ..., rn] is an (ordered) sequence of n rules to achieve some 
purpose.  The last rule implicitly denies all traffic; that is, tn = deny, SAn = A*, DAn = 
A*, Bn = B* and σn ≡ true. 

3.2. Dependencies and redundancies 

A dependency exists between two rules, ri and rj, if they are of opposite type and it is 
possible that there exists a packet, pk, that matches both rules ((pk ∇ ri) ∧ (pk ∇ rj)); 
that is ri and rj are dependent if 

 (ti ≠ tj) ∧ ∃ pk →  (Sak ∈ SAi ∩ SAj) ∧ (Dak ∈ DAi ∩ DAj)    (2) 
∧ (bk ∈ Bi ∩ Bj) ∧ σi(fk) ∧ σj(fk). 

Eliminating the packet, pk, from this expression, allows a {0, 1} dependency matrix, 
D = (dij: 1≤i,j≤n), to be defined: 

 dij  ⇔  (ti ≠ tj) ∧  (SAi ∩ SAj ≠ ∅) ∧ (DAi ∩ DAj ≠ ∅)     (3) 
∧ (Bi ∩ Bj ≠ ∅) ∧ (Σi ∩ Σj ≠ ∅), 

where Σi ⊆ F*  is the subset of flag vectors satisfying σi. 

If dij = 1 then the order of rules i and j must be preserved if the behaviour of the 
policy is to be maintained.  On this basis, the dependency index, a normalised 
measure of rule interdependency, for a set of n rules, can be defined as: 

   DI  =  ∑∑
−

= +=−

1

1 1)1(
2 n

i

n

ij
ijd

nn
      (4) 

and is used in section 6.  DI = 0 means no dependent rules; DI = 1 means all rules 
dependent upon all others.  Higher values of DI constrain rule order more tightly. 

A rule, rj, in a policy, Z, is redundant (written ri  rj) if there exists a rule, ri (i < j), 
in Z, such that all packets matching rj will be matched by ri. 
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 ri  rj ⇔ (ti = tj)∧ (SAi ⊇ SAj) ∧ (DAi ⊇ DAj) ∧ (Bi ⊇ Bj) ∧ (Σi ⊇ Σj).   (5) 

A redundant rule may be removed from the policy without changing its purpose. 

A rule, ri, in a policy, Z, is potentially redundant if there exists a rule, rj (i < j), in Z, 
such that all packets matching ri will be matched by rj. A redundant rule may be 
removed from the policy without changing its purpose provided that no other rules 
between ri and rj are dependent upon rj; that is, 

 ri  rj ⇔ (ti = tj)∧ (SAi ⊆ SAj) ∧ (DAi ⊆ DAj) ∧ (Bi ⊆ Bj)    (6) 
∧ (Σi ⊆ Σj) ∧∀ v → (i < v < j), dvj = 0. 

Both forms of redundancy include the case, ri = rj. 

Finally, and in brief, rules, rα, rβ, rγ .., are said to be co-redundant if there can be 
found a rule, ri (i < α, β, γ, ..), such that ri can replace rα, rβ, rγ ...  Equivalent 
definitions may be derived for co-redundancy with respect to source/destination 
address and protocol/flags, and for potential co-redundancy. 

A useful tutorial approach to the detection and management of redundancies is given 
in (Qian et al., 2001).  (Al Shaer and Hamed, 2004) gives an updated treatment.  
Although interesting, these concepts are not central to this work.  The models 
discussed in this paper apply whether or not the policy, Z = [r1, r2, ..., rn], contains 
redundancies. 

3.3. Hit-rates and latencies 

An access list, or simply list, L, implements a policy, Z = [r1, r2, ..., rn], if it is a 
permutation of the rules of Z such that the order of dependencies is preserved.  Let 
ri(L) be the rule at position i in L.  A special case of a list implementing a policy, Z, 
is the identity list, IZ = [r1, r2, ..., rn], for which ri(IZ) = ri ∀ i (1≤i≤n). 

The hit-rate, h(ri(L),T), of rule ri in a list L, is the probability that a packet from a 
traffic flow T will match ri in L.  Hit-rates can be calculated dynamically using 
counters within the IOS or hardware (Cisco, 2002) (Cisco, 2003). 

The latency, λ( ri), of a rule ri is the time taken to (independently) process ri.  This 
may be calculated from the length of a rule, the nature of the protocols involved or 
taken from stored tables.  In the implementation of some systems, latencies may be 
constant for all rules (see section 5.1) but this is not assumed generally in this paper. 

4. Modelling Traffic Characteristics 

Using the definition of a packet from section 3.1, a packet stream, Pq = [p1, p2, ..., 
pq], is simply a sequence of q packets.  However, there are two other parameters 
necessary for a complete description of traffic flow: the length of each packet and the 
inter-arrival time.  Define φk to be the length of packet k (largely dependent upon the 
payload Xk) and ψk to be the time difference between the arrival (or passing) of 
packets k and k+1.  (ψ0 = 0 by default.).  Then, the sequences Φq =  [φ1, φ2, ..., φq] 
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and Ψq =  [ψ1, ψ2, ..., ψq] describe the distributions of packet lengths and inter-arrival 
times respectively for a sequence of q packets.  No assumptions are made with 
regard to the nature of these distributions (Paxson and Floyd, 1995) (Paxson, 1999) 
(Rezaul, 2007).  The vector triplet Tq = (Pq, Φq, Ψq) describes fully the behaviour of 
the traffic flow for q packets and, for sufficiently large q, we simply refer to the 
traffic, T.  This will provide a full model of traffic flow for any purpose. 

… k–1                    k              k+1       …

ψk-1 
φk

Sak Dak bk fk Xk

ψk
 

Figure 3:  A generic model of traffic (packet) flow 

However, this completely generic model may be unnecessarily complex for specific 
purposes.  In the case of packets being matched against ACLs, the matching occurs 
on (or shortly after) the arrival of each packet.  The time between the arrival of 
packets k and k+1 is given by ωk = φk+ψk and, if Ωq =  [ω1, ω2, ..., ωq] as before, 
then the pair, Tq = (Pq, Ωq) or T = (P, Ω) adequately describes the traffic flow.  
Further simplifications are possible depending upon the nature of the ACL 
implementation and are discussed in the sections that follow. 

5. Methods for Implementing ACLs 

Space here permits only a brief overview of ACL implementation and optimisation. 
See Qian et al. (2001), Al-Shaer and Hamed (2004), Varghese (2005) and Grout et 
al. (2007a and 2007b) for a fuller treatment.  There are essentially three basic 
approaches to implementation – although hybrids are also possible.  Each permits a 
different form and level of simplification to the ACL/traffic, or rule/packet, model. 

5.1. Implementation in TCAMs 

A Content Addressable Memory (CAM) is effectively Random Access Memory 
(RAM) in reverse.  Rather than accepting an address and returning the data at that 
location, a CAM can take an item of data and return the address at which it is to be 
found.  In principle, the operation constitutes a single fetch operation.  A Ternary 
CAM (TCAM) permits wildcard bit matches along with binary ones and zeroes and is 
consequently ideal for allowing matches within ranges of addresses,  protocols, etc. 
of the form to be found within ACL rules.  CAMs and TCAMs can be used for 
various forms of packet look-up including routing tables as well as ACLs.  In a 
routing table, the longest matching entry is returned; in an ACL, the first.  This is the 
fastest but most expensive form of implementation.  Not only is the immensely 
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complex circuitry potentially restrictive; even cooling requirements can be an issue 
on large platforms (McKeown, 2006). 

TCAM  implementation is also the most straightforward in terms of modelling.  The 
size of the TCAM will be n × m, where there are n rules and m is the maximum 
length of each rule i - dependent upon the sizes of the parameters SAi, DAi, Bi and σI 
in the format for a given system.  The time taken to process any packet k is a 
constant, CTCAM (= λ(ri) from section 3.3) and, provided this is less than ωk = φk+ψk, 
there is no instantaneous potential for disruption.  In general, for a packet stream of 
length q, provided 

   ∑
=

≤
q

k
kTCAMqC

1
ω ,      (7) 

there will be no net latency.  In the worst case, with an unbroken stream of packets, 
ψk = 0 ⇒ ωk = φk, ∀k and this becomes 

   ∑
=

≤
q

k
kTCAMqC

1
ϕ .      (8) 

5.2. Implementation as trees or tries 

The concept of arranging ACL rules as a searchable tree structure (binary or 
otherwise) is a fairly obvious one.  Assuming a binary tree arrangement, the first 
matching rule can be found in O(2η) steps, where η is the length of the packet header 
in the given format and, although there are some mechanisms for improving this 
performance in special cases, there will also be non-trivial memory requirements as a 
result.  On this basis, and assuming the worst-case scenario of the previous 
subsection, we require 

   ∑
=

≤
q

k
kTREE

n qC
1

2 ϕ       (9) 

(where CTREE = 2-n λ(ri)) for there to be no net latency for q packets. 

However, in practice, rules are better organised as tries.  A trie (from ‘retrieval’) is 
essentially a tree with an array of pointers at each node, indicating subtries.  There is 
a pointer at each node for each possible value.  The bits of each rule are thus stored 
on the braches of the trie, not the nodes.  Rule look-up can be performed much faster 
on tries than trees, in a time proportional to the number of header fields in fact.  
Again, there are storage requirements but this can be restricted to O(n), for the 
general case, by special techniques involving synergies of hardware and software.  
The trie equivalent of equation (9) thus becomes 

   ∑
=

≤
q

k
kTRIEqC

1
4 ϕ      (10) 

(CTRIE = ¼λ(ri)).  See Varghese (2005) for a comprehensive description of trees and 
tries applied to packet look-up. 
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5.3. Implementation as linear lists 

The simplest, but generally regarded as least efficient, approach to ACL 
implementation, is to process the rules sequentially as a linear list, precisely the 
original interpretation of rule order.  Using the definitions of hit-rates and latencies 
from section 3.3, define the cumulative latency, κ( ri(L)), of ri in a list L, to be the 
time taken to process ri and all rules preceding it in L.  So 

   ∑
=

=
i

i LrLr
1

))(())((
υ

υλκ .    (11) 

The expected latency, E(L,T), of a list L, in traffic T, is then given by 

 ∑ ∑∑
= ==

==
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ii LrTLrhLrTLrhTLE

1 11
))(()),(())(()),((),(

υ
υλκ .          (12) 

In a simple sense, for q packets, we require that 

   ∑
=

≤
q

k
kTLE

1
),( ϕ ,    (13) 

as before, to avoid latency.  However, the value of this approach is that rules 
arranged as a linear list may be reordered to lower the value of E(L,T), provided 
such a rearrangement does not violate any rule dependencies.  In general, for a given 
traffic flow, T, we require to find (or approximate) the list, L, implementing a policy, 
Z, that minimises E(L,T).  Unfortunately, attempting to find such a minimising order 
will, of course, itself have some processing cost.  In fact it is shown by Grout et al. 
(2007a) that the problem is NP-complete and only heuristics, not exact methods are 
viable.  However, even for this effort to be worthwhile, the potential reduction in 
latency must be large enough to warrant running any optimising algorithm.  It 
transpires that this potential benefit can be examined effectively and accurately by a 
further simplification to our traffic model as discussed in the next section. 

6. Case Study: Optimising a Linear List with a Simple Algorithm 

A number of heuristics for minimising expected latency in a sequentially executed 
ACL are given by Grout et al. (2007a).  The most efficient algorithm of all (δ-opt) is 
given (along with its full justification) in Grout et al. (2007b): 

Step 1: Initialisation (on configuration/reconfiguration) 
  for i := 1 to n do 
   h(ri) := 1 
 

Step 2: Promotion (on a match of rule ri) 
  h(ri) := θh(ri); if (di-1 i =0) and h(ri)λ(ri-1) > h(ri-1)λ(ri) then 
   Swap(ri-1, ri) 
 
 
 
 
 



Proceedings of the Seventh International Network Conference (INC2008) 

114 

Step 3: Reduction (every DSIZE packets) 
  for i := 1 to n do 
   h(ri) := h(ri) / max j h(rj) 

Figure 4:  The δ-opt algorithm 

The process works by increasing the hit-rate of the currently matched rule (by a 
factor, θ) and promoting it one place in the list if the trade-off in expected latency is 
positive.  (The full calculations are to be found in Grout et al. (2005))  All hit-rates 
are assumed equal when the list is originally defined (or redefined) by the network 
administrator. 

This is certainly a very simple and efficient algorithm.  The linear (O(n)) Step 1 is 
executed only once, as the list is defined or redefined – an infrequent event.  Step 
3 (also O(n)) executes at intervals to prevent buffer overflow (DSIZE is the size, in 
bytes, of the registers holding hit-rates).  Only the constant Step 2 executes for 
each packet.  Even so, it is not immediately clear that the latency savings from 
running such an algorithm will justify its execution time.  That this is actually so can 
be demonstrated through further simulation. 

6.1. Packet and Traffic Models 

On initial consideration, generating traffic and ACLs for testing appears complicated 
and difficult.  Rules may differ considerably in some, fairly general ACLs, having 
very diverse address ranges, protocols, flags, etc. and combinations of the same; in 
other cases, where the role of an ACL is more focused, each rule may be only a 
slight variant of the others.  Traffic also is difficult to predict and model in any 
generic sense: in principle, packets may be from anywhere, to anywhere, of any type 
and characteristics.  Worse still, is the question of the relationship between traffic 
and an ACL.  Different ACLs and their rules, depending on their purpose, may be 
expected to match packets with varying degrees of success.   For example, the key 
rules in an ACL used to select traffic, within a local network, for address translation 
will probably match many packets – precisely those within the range to be translated; 
however, an ACL acting as a firewall – a safeguard - may have rules defining traffic 
types or address ranges that rarely pass through it.  Generating addresses, protocols 
and flags for rules and packets to interact in any meaningful, realistic way will be 
difficult indeed. 

Fortunately, simulation at this level is unnecessary for our purposes.  A large number 
of the parameters from sections 3 and 4 can be combined into an essential form that 
describes the interaction between rules and packets without needing to precisely 
define their basic form.  The key relationship between rule and packet lies not in the 
detail of addresses, protocols and flags but in the rudimentary issues of how long a 
rule takes to execute and how likely it is to be hit by a packet – taking into account 
the key fact that packets in similar streams are likely to match the same rule.  
Dependencies between rules must also not be overlooked since they prohibit 
arbitrary rule reordering. 
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Rule latencies (λ) and the dependency index (DI) have been defined already.  All that 
is required for what follows is a second value, the similarity index (SI), describing 
the probability that any given packet matches the same rule as its predecessor.  The 
advantage of this approach over attempting to generate ‘real’ rules and packets is that 
values of λ, DI and SI can be generated comprehensively and exhaustively at will - 
allowing a complete set of results to be constructed for all types of ACL and traffic.  
Values of λ, DI and SI for ‘real’ ACLs and traffic can be calculated simply enough 
and the corresponding simulation results applied for prediction, etc.  The process 
proceeds as follows. 

The simulation is based on an in-house numerical model, capable of generating 
ACLs and traffic flows according to a given parameter set.  For tested ACLs, the 
number of rules (n) ranged from 10 to 10 000.  Values of the dependency index, DI, 
in the range 0 (no dependencies) to 1 (complete dependency) were used.  For each 
rule pair, (i,j), dependencies are randomised as dij = 1 with probability DI and dij = 0 
with probability 1 - DI.  Rule latencies were uniformly randomised from 0.5µs to 
1.0µs.  Actual values depend on the router hardware of course (Varghese, 2005) but 
it is only relative values that are significant.  (Routers that process packets faster will 
also optimise faster.) 

For traffic, the simulation is only slightly more sophisticated.  The traffic simulator 
generates packets with given probabilities of matching each rule in the list.  At 
intervals, these probabilities may change to reflect shifting traffic patterns.  Within a 
single traffic pattern, however, there is a certain probability that a packet is identical 
to the previous one – or part of a similar stream - and matches the same rule. 

So, at the start of the simulation, a value of the similarity index, SI, is set.  Then a 

match probability, ρi is randomised for each rule ri and normalised so that 1
1

=∑
=

n

i
iρ .  

The first packet is generated, matching rule ri with probability ρi.  Subsequent 
packets match the same rule with probability SI, and otherwise match any rule 
according to the match probabilities, ρi.  Every q packets, the match probabilities, ρi, 
are re-randomised. 

6.2. Results 

n and DI can be set to produce different types of ACL while q and SI vary to reflect 
different types of traffic.  As an example, Table 1 records simulated output from a 
test with θ = 1.5 (from δ-opt),  n = 1 000,  DI = 0.25,  q = 1 000 000  and  SI = 0.75.  
4 000 000 packets are generated in total, in four stages with varying profiles.  Results 
are reported every 100 000 packets. 
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ACL length (n): 1 000 rules.  Stream length: 4 000 000 packets.  θ = 1.5. 
3 changes in packet flow characteristics. 
Dependency index (DI - probability of a dependency between any two rules): 0.25 
Similarity index (SI - probability of each packet belonging to the same stream as 
the previous one): 0.75 
Table shows mean position of matched rule and mean (cumulative) latency since 
last checkpoint (*), since last traffic variation (") and since start of packet 
stream (^) 
 

Packet         Number of    Average  Average  Average  Average  Average  Average 
 flow          Packets      Rank*    Rank"    Rank^    Latency* Latency" Latency^ 
       R*       R"       R^       L*       L"       L^ 
 

(initial)      100000       485.26   485.26   485.26   366.69   366.69   366.69 
               200000       448.66   466.96   466.96   338.82   352.76   352.76 
               300000       417.56   450.49   450.49   315.14   340.22   340.22 
               400000       391.89   435.84   435.84   295.61   329.06   329.06 
               500000       372.26   423.12   423.12   280.83   319.42   319.42 
               600000       356.86   412.08   412.08   269.20   311.05   311.05 
               700000       349.02   403.07   403.07   263.29   304.23   304.23 
               800000       340.53   395.25   395.25   256.89   298.31   298.31 
               900000       338.29   388.92   388.92   255.16   293.51   293.51 
              1000000       333.14   383.35   383.35   251.33   289.30   289.30 
 

(variation)   1100000       487.61   487.61   392.82   364.08   364.08   296.09 
              1200000       455.80   471.71   398.07   340.46   352.27   299.79 
              1300000       424.65   456.02   400.12   317.41   340.65   301.15 
              1400000       396.19   441.06   399.84   296.09   329.51   300.79 
              1500000       374.08   427.67   398.12   279.42   319.49   299.36 
              1600000       360.43   416.46   395.76   269.12   311.10   297.47 
              1700000       348.11   406.70   392.96   260.16   303.82   295.28 
              1800000       345.88   399.09   390.35   258.65   298.17   293.24 
              1900000       336.54   392.14   387.51   251.78   293.02   291.06 
              2000000       334.00   386.33   384.84   249.91   288.71   289.00 
 

(variation)   2100000       480.18   480.18   389.38   358.17   358.17   292.30 
              2200000       447.21   463.69   392.01   333.58   345.88   294.17 
              2300000       419.02   448.80   393.18   312.50   334.75   294.97 
              2400000       391.50   434.48   393.11   292.04   324.07   294.85 
              2500000       372.56   422.09   392.29   278.02   314.86   294.17 
              2600000       358.98   411.57   391.01   268.09   307.07   293.17 
              2700000       348.82   402.61   389.45   260.85   300.46   291.97 
              2800000       344.28   395.32   387.83   257.67   295.12   290.75 
              2900000       340.32   389.21   386.19   254.85   290.64   289.51 
              3000000       339.55   384.24   384.64   254.42   287.02   288.34 
 

(variation)   3100000       476.78   476.78   387.61   355.68   355.68   290.51 
              3200000       442.44   459.61   389.33   330.09   342.88   291.75 
              3300000       414.21   444.48   390.08   309.26   331.68   292.28 
              3400000       393.23   431.67   390.17   293.73   322.19   292.32 
              3500000       376.00   420.53   389.77   281.09   313.97   292.00 
              3600000       358.76   410.24   388.91   268.47   306.39   291.35 
              3700000       350.40   401.69   387.86   262.32   300.09   290.56 
              3800000       343.42   394.41   386.70   256.97   294.70   289.68 
              3900000       344.01   388.81   385.60   257.34   290.55   288.85 
              4000000       339.55   383.88   384.45   254.02   286.90   287.98 

Table 1:  Simulated Results: Rank and Cumulative Latencies. 

Tabled results are the mean position of the matched rule (rank) in the ACL and the 
mean cumulative latency of this rule.  In both cases, three values are given: the mean 
since the last set of figures (R* & L*) – the instantaneous average, the mean since 
the last traffic variation (R” & L”) – the variation average, and the mean of the 
entire simulation (R^ & L^) – the continuous average.  The three latency averages, 
L*, L” and L^, are plotted in Figure 5. 
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Figure 5:  Simulated Results: Cumulative Latencies. 

The mean rank, R, for a 1 000 rule list with no optimisation will be 500 and the mean 
cumulative latency, L, for a latency range of 0.5 to 1.0, 500 × (1.0 + 0.5) / 2 = 375.  
In simulation, optimised averages start at these values and are then progressively 
lowered as rules with high hit rates are promoted.  When traffic profiles change, 
instantaneous and variation averages become poor again but are gradually improved 
once more as the ACL adapts to the new characteristics.  The continuous average 
becomes steadier over time.  In this example, L^ approaches a figure of 
approximately 287, an improvement of 23% on the non-optimised figure. 

 
 

ACL length (n): 1 000 rules.  Stream length: 4 000 000 packets. 
DI – Dependency Index.  SI – Similarity Index. 
Traffic (packet) characteristics change every q packets. 
 

Table shows values of percentage improvement in expected latency 
(100(L–L^)/L) for different values of DI, SI, q and θ. 
 

                       DI =  0     0.25    0.5    0.75     1 
 

       SI = 0           θ = 1.1  15 14 13 10 0 
       q = 10               1.5 15 14 13 10 0 

                    2.0 15 14 13 10 0 
                2.5 14 13 12  9 0 
                1.5 14 13 12  9 0 

 

       SI = 0.25   θ =  1.1  17 15 13 10 0 
       q = 1 000        1.5 17 15 13 11 0 

                2.0 17 15 14 11 0 
                2.5 17 15 14 11 0 
                1.5 17 15 13 10 0 

 

       SI = 0.5   θ =  1.1  19 17 15 10 0 
       q = 50 000       1.5 21 18 15 11 0 

                2.0 21 18 15 12 0 



Proceedings of the Seventh International Network Conference (INC2008) 

118 

                2.5 21 18 15 12 0 
                1.5 21 18 15 12 0 

 

       SI = 0.75   θ =  1.1  19 17 15 12 0 
       q = 1 000 000    1.5 26 23 20 13 0 

                2.0 28 27 20 14 0 
                2.5 28 27 20 14 0 
                1.5 28 27 20 14 0 

 

       SI = 1           θ =  1.1  20 19 16 13 0 
       no variation     1.5 27 25 20 13 0 

                2.0 30 29 22 16 0 
                2.5 30 29 22 16 0 
                1.5 30 29 22 16 0 

Table 2:  Simulated Results: Traffic Parameters and Promotion Coefficient. 

Different parameters affect these values as shown in Table 2.  Results are 
proportionally similar for different n.  High values of DI work against the 
optimisation process, prohibiting desirable swaps.  In the extreme cases, DI = 1 
prevents any optimisation whereas DI = 0 allows rules to move freely.  High values 
of q and SI imply greater traffic stability, which improves the optimised values.  The 
effect of θ is more subtle.  High values make rule promotion faster, which works 
well for similar, stable traffic but can lead to repetitive, unnecessary swaps for 
continuously changing, or oscillating, traffic patterns.  A balance is necessary, with a 
value around θ = 2 appearing to maximise the improvement in expected latency in 
most cases. 

6.3. Analysis 

Routers vary considerably in their operation, particularly in terms of functional 
implementation in hardware.  The following is, by necessity, generic and, to some 
extent, imprecise.  However, it gives an appropriate indication of the relative worth 
of dynamic optimisation.  We discuss an operation simply as a unit of calculation or 
assignment, probably performed in hardware on the appropriate interface.  
(However, the same argument would apply in relative terms if these operations were 
to be a part of the operating system software.) 

For any given ACL manual configuration (or reconfiguration), Step 1 of the δ-opt 
algorithm is executed once and can be taken as part of the configuration, Step 2, 
every processed packet, and Step 3, every DSIZE packets.  Step 2 consists of an 
assignment, two calculations, two comparisons and a conjunction (possibly) 
followed by a swap of six assignments – three for the rules and three for their hit-
rates - twelve operations in all.  Step 3 has two loops of size n, one to establish the 
maximum value and the other to reduce each value.  The mean complexity (of Step 
3) each packet is then 2n / DSIZE and, in total, 12 + 2n / DSIZE for Steps 2 & 3 
combined. 

Matching a packet against a rule consists of at least one operation (permit or deny) 
followed by between 1 and 5 comparisons (Figure 1).  Taking a mean of 1 + 3 = 4 
operations per rule and a percentage saving for an optimised list of ξ gives an 
optimisation trade-off of 
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DSIZE

nnT 212
100
4

−−=
ξ ,    (14) 

which will be positive (i.e. worthwhile) when 

   
DSIZEn

50300
+>ξ .    (15) 

For example, taking n = 1 000 and DSIZE = 16, this gives 300 / 1 000 + 50 / 16 = 
3.425.  Table 2 shows that the improvement, ξ, exceeds this for all values other than 
DI = 1 and is therefore worthwhile.  Alternatively, taking θ = 2 and DI = SI = 0.5 
gives an improvement of ξ = 15 and a trade-off of T = (15 x 1 000) / 25 – 12 – 2 000 
/ 16 = 463, a positive benefit.  Table 3 extends this calculation across a range of 
values of n and DSIZE and, for each DSIZE, shows the key value of n*, the size of 
ACL for which optimisation is profitable.  Table 4 fixes DSIZE at 16 and calculates 
n* for various values of DI and SI. 

 
 

DI = SI = 0.5.  θ = 2. 
 

Table shows value of trade-off function, T = ξn/25 – 12 – 2n/DSIZE, for 
different values of n and DSIZE. 
 

        DSIZE =  8  16    32     64 
 

        n   =   10     -8.50    -7.25    -6.63    -6.31 
                             30     -1.50     2.25     4.13     5.06 
                            100     23.00    35.50    41.75    44.88 
                            300     93.00   130.50   149.25   158.63 
                          1 000    338.00   463.00   525.50   556.75 
                          3 000   1038.00  1413.00  1600.50  1694.25 
 

         n*  =  34.28    25.26    22.32    21.10 
          

n* is the minimum length of list for T to be positive (i.e. for 
optimisation to be worthwhile). 

Table 3: Optimisation Trade-Off – Saving against Cost 

 
 

θ = 2.   DSIZE = 16 
 

Table shows the value of n*, the minimum length of list for T = ξn/25 – 
12 – n/8, to be positive (i.e. for optimisation to be worthwhile) for 
different values of DI and SI. 
 

   DI  =   0.0     0.25    0.5     0.75     1.0 
 

              SI  =    0      25.26   27.59   30.37   43.64     ∞ 
                       0.25   21.62   25.26   27.59   38.09     ∞ 
                       0.5    16.78   20.17   25.26   33.80     ∞ 
                       0.75   12.06   12.57   17.78   27.59     ∞ 
                       1      11.16   11.59   15.89   23.30     ∞ 

Table 4: Optimisation Trade-Off – Minimum ACL Length 
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6.4. Discussion 

No amount of traffic modelling can substitute entirely for testing on production 
routers.  However, these simulations are extensive and, within themselves, give 
consistent results. 

The major obstacle to successful (worthwhile) optimisation is highly interdependent 
rules in an ACL.  If no or few rules are permitted to be reordered then it is 
impossible or difficult to find equivalent lists with lower expected latencies.  
However, this is rarely the case in practical ACLs.  The typical ACL in Figure 1, for 
example, has large blocks of separate ‘permit’ and ‘deny’ blocks with no 
dependencies within them.  A worst-case figure for a practical ACL is likely to be DI 
≈ 0.5, giving good results (Tables 2 & 4). 

Table 2 suggests θ = 2 as an appropriate (and, in fact, convenient) value for the 
promotion coefficient.  The number of packets between hit-rate reductions (Step 3) is 
then DSIZE, the size (number of bits) of the register being used to store them.  (Step 
3 is performed to prevent register overflow.  The fastest route to overflow is through 
a stream of packets all matching the same rule.  The hit-rate of this rule will increase 
by a factor of θ = 2 on each packet and, after a packets, will have a hit rate of 2 a.  
The maximum safe number of packets between successive executions of Step 3 is 
then log 2 2DSIZE = DSIZE.) 

Depending on the stability and similarity of the traffic (q and SI) and the size of 
registers used to store hit-rates (DSIZE), optimisation becomes worthwhile for ACLs 
above a certain length (n*) (Tables 3 & 4).  For realistic dependencies, this figure 
ranges between about 10 and 30.  (Note also that this analysis assumes the worst-
case scenario, from section 5, of packets arriving as an unbroken stream.)  It is then 
trivial to separate those lists to which optimisation is to be applied from those to 
which it is not (Grout et al., 2006).  Of course, it is precisely for longer ACLs that 
optimisation will yield the best results. 

 
 

For 11 real-world ACLs, the table shows the cases where δ-opt is 
worthwhile ( ) or not ( ) for different levels of traffic similarity 
(SI).   θ = 2.   DSIZE = 16.   
 

 ACL n DI SI  = 0.00   0.25   0.50   0.75   1.00 
 

  A 16     0.47        
  B 53     0.47        
  C 55     0.30        
  D     144     0.30        
  E 19     0.47        
  F 93     0.36        
  G     111     0.39        
  H 62     0.12        
  I     172     0.43        
  J 68     0.40        
  K 63     0.45        

Table 5: Real-World Examples 
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Table 5 summarises the characteristics of several ACLs taken from a variety of 
production applications.  (No attempt has been made to remove redundancies or 
inconsistencies, etc. from these ACLs: they are taken directly from source.)  ACLs 
B, C and D are taken from college/university LANs, F, G and H from company 
networks and A and E from Small Office/Home Office (SOHO) environments 
connecting to the Internet via an ISP.  ACLs I, J and K are derived from templates 
for various standard security configurations.  δ-opt is seen to be effective in the 
majority of real-world cases. 

7. Conclusions 

This case study justifies the use of simple heuristic optimisation (δ-opt) applied to 
ACLs implemented as linear lists.  It is shown that the savings in latency outweigh 
the cost of execution time in the majority of cases.  Equally significantly, for any 
given ACL, operating within traffic with known characteristics, a simple calculation 
based on rule latencies, dependencies and stability can determine whether δ-opt 
optimisation will be beneficial for that ACL.  (If traffic stability cannot be 
determined, a worst-case scenario can be assumed.) 

However, the paper, as a whole, also re-establishes a more well-known general 
principle.  Although traffic and ACL modelling and simulation, in their most general 
form, may be complex and difficult, an analysis of the relevant parameters, in a 
particular situation or application, may offer a level of simplification without losing 
accuracy of representation or the essential behaviour of the underlying system. 

This notion is illustrated here by considering the essential traffic parameters that 
apply when analysing various implementations of ACLs.  Both ACL rules and traffic 
packets have a fairly complex structure and the relationship between them is more 
complex still.  However, each of the standard ACL implementations offers its own 
form of simplification to the general model and the case study, for sequentially 
processed lists, actually takes advantage of the relationship between lists and traffic 
by discarding those parameters not directly involved by it.  The result is a 
streamlined, but still appropriate, model, capable of yielding efficient and powerful 
results. 
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