
Chapter 4 – Applications and Impacts

207

Efficient Resource Management based on Non-
Functional Requirements for Sensor/Actuator Networks

C.Timm¹, F.Weichert², C.Prasse³, H.Müller², M.ten Hompel4 and P.Marwedel¹

¹Department of Computer Science 12, TU Dortmund, Germany
²Department of Computer Science 7, TU Dortmund,Germany

³Fraunhofer Institute for Material Flow and Logistics, Dortmund, Germany
4Chair for Materials Handling and Warehousing, TU Dortmund, Germany

e-mail: constantin.timm@postamt.cs.tu-dortmund.de

Abstract

In this paper, a novel resource management approach is presented for publish-subscribe
middleware for sensor/actuator networks. The resource management was designed with the
possibility to add non-functional requirements at runtime to subscription messages. This
approach allows utilizing service level agreements that can then be employed in order to
guarantee a certain quality of service or to reduce the energy consumption of a sensor node in
a sensor/actuator network. As an example, a sensor/actuator network for facility logistics
system (a conveyor belt system) is evaluated with respect to energy consumption. This
sensor/actuator network is mostly controlled by image processing based sensor nodes. It is
shown that an adaptive processing interval for these sensor nodes can reduce the energy
consumption of the entire network. The utilization of non-functional requirements allows the
system to adapt -- after software development -- to context changes such as the extension of
the conveyor belt systems topology.

Keywords

Middleware, Non-Functional Requirements, Sensor/Actuator Network

1. Introduction

Web service based technologies are becoming a standard technique for connecting
embedded systems. Especially the spreading of DPWS (Device Profile for Web
Services) (Chan et al., 2006) in this field and its utilization of standard internet
protocols shows that standardization is a major promoter of scalable and re-usable
SANETs (Sensor/Actuator NETwork). SANETs provide the possibility to gather
information from an environmental context via sensors and sensor nodes and to
interact with the environment through actuator nodes without a central control
infrastructure – often in a wireless environment (Akyildiz and Kasimoglu, 2004) but
not restricted to this. The benefit of these networks is a high adaptation capability in
terms of deployment and of failure recovery.

One of the major features of DPWS is the specification of a web service based
publish/subscribe paradigm which is known from state-of-the-art automotive
communication protocols or from factory steering components such as PLCs
(Programmable Logic Controllers). The basic principle of this publish/subscribe

Proceedings of the Ninth International Network Conference (INC2012)

208

paradigm is that there are service providers which push information about an event
only to those service consumers that subscribe to the corresponding service providers
in advance. Especially when processing capability and network bandwidth are
scarce, publish/subscribe has an advantage in comparison to a polling-based
communication because the transmission of data is only initiated when necessary. A
state-of-the-art middleware which is based on DPWS is MORE (network-centric
Middleware for GrOup communication and Resource Sharing across Heterogeneous
Embedded Systems) (Wolff et al., 2007).

Figure 1: (a) SANET-based Conveyor Belt System and (b) Integration of
Resource Management with Subscription Manager

According to (Pavlovski and Zou, 2008), ”non-functional requirements are ...
referred to as constraints, softgoals, and the quality attributes of a system”. This
non-functional ”information” should be modeled in a middleware architecture to
handle resource utilization efficiently. As stated in (Franch and Botella, 1998),
software design comprises three non-functional core concepts. First of all, there are
non-functional attributes which comprise certain attributes such as time efficiency.
The second non-functional concept is a non-functional behavior which is the
assignment of a non-functional attribute to a software component. The last non-
functional core concept, is that of a non-functional requirement which is the actual
assignment of a concrete value to a non-functional behavior. In many cases a non-
functional requirements models a QoS (Quality of Service) requirement. The newly
designed central point for gathering non-functional requirements and for controlling
the adaptation to these requirements is the extended resource management, named
NOFURES (NOn-FUnctional RESource management). In contrast to the original
resource management service of MORE, NOFURES allows to assign non-functional
attributes and requirements to the subscription mechanism of MORE. As opposed to
other software design methods, the non-functional requirements from the actuator
nodes are evaluated on each sensor node in a middleware environment at runtime.

In this paper, an exemplary SANET for a conveyor belt system from the field of
automated facility logistics systems is the considered use case (Figure (a)). The
SANET of the conveyor belt system comprises different sensor nodes and actuator
nodes (Timm et al., 2011). The sensor nodes of the system (e.g. camera system or
RFID readers) are directly connected to the actuator nodes such as a deflecting belt
or switch employing publish-subscribe methods of MORE, as was presented in
(Timm et al., 2011). This is fundamentally different – but more efficient – compared
to traditional systems where there is only a central controlling instance. The
functionality of NOFURES is employed and evaluated with respect to this exemplary

Chapter 4 – Applications and Impacts

209

SANET. Constraints and non-functional attributes of the SANET controlling the
conveyor belt systems can be, for instance: soft deadlines, analysis quality and input
quality.

The most relevant resources at processing level are execution time and energy
consumption. The first was already addressed in former versions of MORE (Alonso,
2010) while the latter is a new objective which is considered in this paper. One of the
most critical parameters in terms of energy consumption of a service provider is the
update interval in which events have to be processed and how often a service
consumer needs that information. This update interval is directly connected to the
QoS of a middleware service and therefore, this non-functional attribute is
considered in this paper. The specification of a non-functional requirement allows to
adapt the system behavior at runtime.

The major contributions of this paper can be summarized as follows:

 Non-functional requirements are taken into account in a publish/subscribe
middleware at runtime.

 The specification of a central resource management enables
controlling/observing the QoS of all middleware services.

 The energy consumption of sensor nodes is explicitly considered at runtime.

The paper is structured as follows: After this introduction, related work is presented
in Section 2. The principles of embedding non-functional requirements to the
subscription mechanism of a DPWS-based middleware are introduced in Section 3.
In Section 4, the results are presented, followed by a conclusion in Section 5.

2. Related Work

In view of the enormous number of publications in the domain of SANETs as well as
in the field of the SANET specification, the following presentation focuses on papers
that are related to the approach presented in this paper. In (Sharaf et al., 2004), the
authors presented an approach to reduce the amount of data which is transferred in a
wireless sensor network over the course of time. The authors – in contrast to this
paper – mainly focused on the routing in a network and on the aggregation of data
inside the network to achieve savings in terms of energy. The authors of (Munir and
Filali, 2007) described a routing and topology building methods for a wireless
SANET. The proposed method models the end-to-end delay and the energy
consumption as hard constraints which must not be violated. In addition to that, the
topology of the network is constrained such that there is only one connection to an
actuator node.

The methods proposed in this paper adapt the processing frequency of the sensor
nodes in the network which can be seen as a type of Adaptive Sampling (Alippi et
al., 2007). Within that work the authors proposed an adaptive sampling method that
enabled the developer of a wireless sensor network to save energy. The approach
took into account that some wireless SANETs, the energy consumption for
processing is higher than for communication. This fact is also exploited by the

Proceedings of the Ninth International Network Conference (INC2012)

210

methods in this paper. However, the work presented in (Alippi et al., 2007) does not
focus on the same application environment which are Ethernet-based SANETs.

Another area of interest is the field of resource management (Alonso, 2010) and
adaptive applications (Davies et al., 1996). In the latter work, the authors presented a
framework for creating a sensor network with different QoS levels.

Figure 2: Publish-Subscribe-Mechanism without (a) and with (b) the ability to
specify QoS requirements

The last areas of interest are business applications and software architecture. Several
papers about non-functional requirements exist in these areas (D’Ambrogio, 2005;
Pavlovski and Zou, 2008; Franch and Botella, 1998) but they are more software
architecture related and do not focus on runtime adaptivity. Overall, it can be
summarized that not all aspects of resource management in the area of SANET
research are exploited.

3. Non-Functional Requirements Aware Middleware

The capability to adapt sensor node behavior in a system to non-functional
requirements and its integration in a resource management (NOFURES) are the
novelties presented in this paper (Section 3.2). Section 3.1 will summarize methods
of the MORE middleware (cf. Figure (b)) which will be followed by the description
of a exemplary implementation for a conveyor belt system in Section 3.3.

3.1. General Architecture

The design of the MORE Middleware (Schmutzler et al., 2008; Wolff et al., 2007)
conforms to the paradigm of SOA (Service Oriented Architectures) by adopting it for
external and internal communication to provide a high degree of flexibility. In terms
of communication protocols, MORE satisfies a subset of the DPWS specification
(Chan et al., 2006) including an ad-hoc service publication and service discovery
mechanism which is specified in the standard WS-Discovery. The latter is a
multicast-based approach which is well-suited for local area networks. For the use in
wider network topologies, a concept called discovery proxy is described which hosts
a directory service. The major contribution of the MORE middleware are the Added
Value Services which offer common functionality like service orchestration, group
and resource management services (refer to (Wolff et al., 2007) for more details).
The two most important features of this middleware are the resource management –
an extension of it is presented in the next section – and the publish/subscribe

Chapter 4 – Applications and Impacts

211

eventing services as specified in the DPWS specification (Chan et al., 2006). The
latter extends web services by the possibility to subscribe to asynchronous event
messages of a service and is based on the WS-Eventing standard. The use of the
publish/subscribe paradigm (cf. Figure 2(a)) within the MORE Middleware is
especially important for sensor/actuators networks and makes the design and
deployment of such networks smarter. A polling-based approach is inappropriate in
SANETs where nodes with low processing capabilities or with energy constraints
can be found.

 <SOAP-ENV:Envelope ... xmlns:nonfunc="...">
 <SOAP-ENV:Header>
 ...
 <nonfunc:Parameters>
 <nonfunc:item>
 <nonfunc:Nam e>notify_int_low</nonfunc:Name>
 <nonfunc:Value>490</nonfunc:Value>
 <nonfunc:Unit>ms</nonfunc:Unit>
 </nonfunc:item>
 <nonfunc:item>
 <nonfunc:Name>notify_int_high</nonfunc:Name>
 <nonfunc:Value>510</nonfunc:Value>
 <nonfunc:Unit>ms</nonfunc:Unit>
 </nonfunc:item >
 </nonfunc:Parameters>
 </SOAP-ENV:Header>
 ... </SOAP-ENV:Envelope>

Figure 3: Integration of Non-Functional Requirements to Subscription Message

3.2. Non-Functional Resource Management – NOFURES

The novel resource management service has the ability to cooperate with the
subscription management of MORE. The new functionality is summarized by the
term NOn-FUnctional RESource management (NOFURES). A tight integration with
the middleware core and the operating system enables the resource management
service (cf. Figure (b)) to handle the non-functional requirements added to the
subscription of a service. The specification of these requirements of the subscriber
enables the resource management to adapt the behavior of the system towards a SLA
(Service Level Agreement). NOFURES is designed to track several resources at
runtime. The non-functional attributes are specified using the WSDL service
description; analogue to the specification of performance qualifier for web services
proposed in (D’Ambrogio, 2005). An example subscription message with non-
functional requirements to the update interval of the service consumer is depicted in
Figure 3. As one can see, non-functional information is added to the header of the
subscription message. The integration was accomplished in a way that these
messages can also be interpreted by DPWS devices which do not need non-
functional requirements. A new namespace nonfunc was created in which the non-
functional requirements can be specified. The non-functional requirements are listed
in an XML sequence called nonfunc:Parameters which includes one or more non-
functional items comprising a name, a value and a unit. The requirements listed in
Figure 3 show lower (490ms) and upper bounds (510ms) for the update interval. The
adaptation of the behavior of the service to SLA is controlled by NOFURES. In
particular, the resource management service handles all accesses of a service to the
underlying operation system and libraries and controls the execution of the service.

Proceedings of the Ninth International Network Conference (INC2012)

212

The control functionality can include features such as the (average and worst case)
runtime of a service, the quality of the result of a service or service failures. This is
needed in order to regulate the processing of a service towards a conformance to the
specified non-functional requirements. The traditional publish/subscribe process is
depicted in Figure 2(a). The actuator nodes subscribe to the sensor node events and
get informed when new events of the subscribed type happen. In comparison to that,
an example of how an SLA or QoS Decision can be used with NOFURES is depicted
in Figure 2(b). For example, there could be service consumers 1cs and 2cs which

are interested in a certain service as providing an image analysis with certain frame

rates 21 xx  with respective QoS of 21 qq  . With NOFURES 1cs and 2cs can

now inform as with which particular QoS the results of as are required (e.g. 1cs

needs 1q and 2cs needs 2q). For the QoS, several policies could be applied, e.g.
provide a service with a QoS that satisfies all requirements. If the latter is applied,
the NOFURES service on as can choose 2q for both services in order to satisfy the

non-functional requirements of 1cs and 2cs .

3.3. Use Case: Camera-based Conveyor Belt System

As an exemplary system, a SANET controlling a conveyor belt is considered. The
most important places within a conveyor belt system are the switches taking the
decision to route a parcel to one or another direction. In the past, these switches were
controlled by a larger number of sensors, such as light-barriers or RFID-readers and
a central control instance that tracks all parcels on the conveyor belt and which is
responsible for taking control decisions. This approach is inefficient, especially from
the perspective of costs but also from the point of flexibility and scalability. A new
approach was introduced in (Timm et al., 2011) which replaces light-barriers and
RFID-readers at the switches by low-cost cameras and an in-situ marker detection
system (as depicted in Figure (a)). The employed marker technology is called QR
code (International Organization for Standardization, 2006). The image processing as
part of the marker detection system was accelerated by a parallel processing
hardware based on OpenCL (Khronos Group, 2010). The topology of the SANET is
as follows (cf. Figure (a)): The sensor nodes observe one or more switches and the
belt in front of them. The actuator nodes of the SANET are the switches which
subscribe to the sensor nodes. All sensor nodes and actuator nodes are equipped with
the MORE middleware and the new resource management NOFURES.

One of the most critical parameters in terms of energy consumption of a service
provider is the interval in which events take place/have to be processed and how
often a service consumer needs that information. If, for instance, the information
(QR code) which is provided to the service consumer is not updated in consequent
events, this information need not be transferred again. In terms of the conveyor belt,
this could be a parcel which is still on the same trail towards a switch. The switch as
a service consumer is only interested in the parcel’s data if it represents new
information and therefore attributes with the necessary update interval are added to
the sensor node’s subscription. The sensor node can then adapt to this requirement.

Chapter 4 – Applications and Impacts

213

Therefore, the non-functional attribute which occurs on the sensor nodes and which
is evaluated in this study, is the update interval. It describes the minimal and
maximal time interval in which a sensor node has to provide data if events occur.
NOFURES can actively restrain the events which are published by a sensor node. If
more than one actuator node subscribes to a sensor node. The minimal update
interval is chosen.

4. Evaluation

This section provides the basic requirements to evaluate the functionality and
efficiency of the proposed resource management in real logistics system architecture
and the corresponding results. First of all, the testbed for the sensor nodes is
introduced (Section 4.1) and then the results are presented (Section 4.2). The
evaluation shows how resources such as energy can be saved by providing non-
functional requirements to the subscription process.

4.1. Testbed

Both, energy consumption and performance are measured with a performance and
energy benchmarking testbed. The sensor node is powered via a 5V DV power
supply connection. For measuring the power consumption of the sensor node, a
power clamp at the 5V power line is utilized. The power clamp provides a voltage
proportional to the current flowing through the probed lines which can be measured
employing an oscilloscope (Sampling frequency: 10kHz).

The following tests were conducted: The energy consumption and the processing
time were measured for two image sizes: 320×240 pixels and 640×480 pixels. After
these initial tests, several update intervals were tested in order to determine the
update interval with optimal energy consumption for the considered conveyor belt
system. The update intervals of the sensor nodes are 250ms±10ms, 500ms±10ms and
1000ms±10ms. They are added as lower and upper bounds to the subscription
messages as depicted in Figure 3. The maximal speed of the considered conveyor
belt system is approximately 1 meter per second. Due to this and the architecture of
the system, the largest possible update interval is 1000ms±10ms, otherwise not all
parcels can be identified properly. This is the standard speed of conveyor belt
systems.

The baseline system configuration is publish/subscribe SANET without any
restriction in terms of detected QR codes. Every detection is therefore transmitted.

4.2. Results

The results in Figure 4 show the different processing phases of the sensor nodes and
thereby prove that theses nodes can adapt to the desired update intervals. While
waiting for the next image, the power consumption ranges from 3.5 up to 4.5 watts.
During image processing, up to 6.75 watts are consumed by the sensor node. In this
figure, only processing intervals are shown where a QR code was fully decoded.
Therefore, the execution times for images with incomplete QR code detection are
shorter. On the other hand, image processing methods and most of the detection-

Proceedings of the Ninth International Network Conference (INC2012)

214

related algorithms are executed, regardless of the presence of a QR code in the
image.

Figure 4: Power Consumption for Different Subscription Intervals

Table shows the results for energy consumption and the processing time for
different image sizes. When an QR code is detected in a image, analysis required
88ms for a 320×240 pixels image and 291ms for 640×480 pixels image (energy
consumption: 0.377 Joule, respectively 1.271 Joule). The lower bound for image
processing (no QR code in an image) within the marker detection process for a
320×240 pixels image amounts to 36ms and to 132ms for a 640×480 pixels image.
The minimal energy consumption for these lower processing bounds amounts to
0.152 Joule, respectively 0.574 Joule.

QR code Detection No QR code detectedImage Size
(Pixels) Avg.

Runtime (s)
Avg. Energy
Consum. (J)

Avg.
Runtime (s)

Avg. Energy
Consum. (J)

320×240 0.088 0.377 0.036 0.152
640×480 0.291 1.271 0.132 0.574

Table 1:Energy Consumption for Analyzing a Single Image

The energy consumption results for the sensors nodes and the different update
intervals are depicted in Table 2. The energy consumption values comprise a one
minute time frame. Minimal energy is consumed when no QR code was processed in
the specified interval and maximal energy is consumed in the specified interval when
for each processed image a QR code was recognized. When no update interval was
specified in a subscription message then minimal energy consumption for an image
of size 320×640 pixels is 196 Joule and 211 Joule for an image of size 640×480
pixels. The maximal energy consumption for the same scenario is 212 Joule
(320×240) respectively 225 Joule (640×480). These energy consumption values also
characterize the system without NOFURES and therefore, they are used as the
baseline for the evaluation. For an image size of 640x480 pixels and an update
interval of 250±10ms, an evaluation not possible since the average runtime of QR
detection exceeds this interval with 290ms. For the largest update interval
(1000±10ms), the minimal energy consumption for an image of size 320×240 pixels
is 183 Joule and 187 Joule for an image of size 640×480 pixels. The maximal energy

Chapter 4 – Applications and Impacts

215

consumption for the same scenario (1000±10ms) is 187 Joule (320×240) respectively
200 Joule (640×480). This means that, in total, 12% (187Joule/212Joule) energy is
saved in a system working with images of size 320x240 pixels and an update interval
of 1000ms±10ms, in comparison to a system without NOFURES. For 640×480
pixels sized images, there is a reduction of the energy consumption of up to 8%
(200Joule/225Joule). Overall, it can be summarized that by extending the update
interval of the sensor nodes energy can be saved.

Image Size
(Pixels)

Interval
(± 10 ms)

Minimal Energy
Consumption (J)

Maximal Energy
Consumption (J)

320×240 Without NOFURES 196 212
320×240 250 188 202
320×240 500 185 191
320×240 1000 183 187
640×480 Without NOFURES 211 225
640×480 250 - -
640×480 500 194 218
640×480 1000 187 200

Table 2: Energy Consumption per Minute for Different Update Intervals

5. Conclusion

This paper described an enhancement of a publish/subscribe middleware by the
utilization of non-functional requirements for enabling a more efficient utilization of
resources such as energy in a sensor/actuator network. To this end, the resource
management of a state-of-the-art middleware based on DPWS, called MORE, was
expanded to control and track the behavior of running services. Furthermore, it was
extended to evaluate non-functional requirements encapsulated in subscription
messages. The subscription process of the MORE was modified to specify non-
functional requirements by a service consumer and to interpret them on the service
provider side. NOFURES was then applied on an automated facility logistics system.
The SANET in this system was employed with MORE and NOFURES. It was
evaluated towards it capability to save energy by specifying a certain event
notification interval. For future work, several other QoS/non-functional requirements
will be evaluated with NOFURES. Furthermore, it will be evaluated if it is even
more beneficial for energy consumption of sensor nodes when they share
information, e.g. a preceding sensor node can share information whether there are
parcels on their way to succeeding sensor nodes.

6. References

Akyildiz, I. F. and Kasimoglu, I. H. (2004), “Wireless sensor and actor networks: research
challenges”, Ad Hoc Networks Journal (Elsevier), Vol. 2, No. 4, pages 351 – 367.

Alippi, C., Anastasi, G., Galperti, C., Mancini, F., and Roveri, M. (2007), “Adaptive sampling
for energy conservation in wireless sensor networks for snow monitoring applications”, IEEE
International Conference on Mobile Adhoc and Sensor Systems, pages 1 –6.

Proceedings of the Ninth International Network Conference (INC2012)

216

Alonso, A., Salazar, E., and Lo andpez, J. (2010), “Resource management for enhancing
predictability in systems with limited processing capabilities”, IEEE Conference on Emerging
Technologies and Factory Automation, pages 1 –7.

Chan, S. et al. (2006), Device Profile for Web Services, OASIS Standard.

D’Ambrogio, A. (2005). “A WSDL extension for performance-enabled description of web
services”. International Conference on Computer and Information Sciences, pages 371–381.

Davies, N., Friday, A., Blair, G. S., and Cheverst, K. (1996), “Distributed systems support for
adaptive mobile applications”, Mobile Networks and Applications, Vol. 1, No. 4, pages
399–408.

Franch, X. and Botella, P. (1998), “Putting non-functional requirements into software
architecture”, International Workshop on Software Specification and Design, pages 60 –67.

International Organization for Standardization (2006), “Norm ISO/IEC 18004 2006. QR Code
2005 bar code symbology specification”

Khronos Group (2010), “OpenCL Specification”

Munir, M. F. and Filali, F. (2007), “Maximizing network-lifetime in large scale heterogeneous
wireless sensor-actuator networks: a near-optimal solution”, Performance evaluation of
wireless ad hoc, sensor, and ubiquitous networks, pages 62–69

Pavlovski, C. J. and Zou, J. (2008), “Non-functional requirements in business process
modeling”, Asia-Pacific Conference on Conceptual Modelling, pages 103–112.

Sharaf, A., Beaver, J., Labrinidis, A., and Chrysanthis, K. (2004), “Balancing energy
efficiency and quality of aggregate data in sensor networks”, VLDB Journal, pages 384–403.

Timm, C., Weichert, F., Fiedler, D., Prasse, C., Müller, H., ten Hompel, M., and Marwedel, P.
(2011), “Decentralized control of a material flow system enabled by an embedded computer
vision system”, IEEE ICC RWFI, pages 1–5.

Wolff, A., Michaelis, S., Schmutzler, J., and Wietfeld, C. (2007), “Network-centric
middleware for service oriented architectures across heterogeneous embedded systems”, IEEE
EDOC Conference Workshop, pages 105–108.

