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Abstract

As the number of business applications, games and other real-time applications adopting peer-
to-peer communication approaches increase, so too does the requirement for accurate 
identification of these protocols on the network. This movement is attributed mostly to 
increased scalability in application deployment, reducing the overall cost of network 
resources. Without the identification of critical applications, networks run the risk of 
becoming overwhelmed by lower-priority, less important protocols, reducing resources 
available to higher priority applications. Deep packet inspection and statistical characteristic 
profiling have been used to identify various application flows, however there is an apparent 
disconnect between the two. Whilst both produce fairly accurate results, this paper aims to 
increase the accuracy of these systems by marrying the two into a single classifier using 
artificial neural networks.

Whilst many traffic profiling systems examine the full network flow post-termination, this 
paper proposes a methodology for utilizing the unique characteristics of network traffic flows 
which distinguish various applications at the beginning of the flow, in real-time, allowing 
early identification and thus effective control of a flow within the first few packet exchanges.
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1. Introduction

The growth of network communications has always been hampered by the finite 
resources available, restricted by a number of elements, the most prominent being 
bandwidth availability. These limitations are often imposed by the availability of 
physical wiring and/or the cost of provisioning the services through a 3rd party, such 
as the national telecommunications company. The available bandwidth, therefore, 
needs to be managed, providing optimal use of available resources to satisfy 
customer/user demand.  Application protocols which comprise network traffic need 
to be identified in order to be effectively managed and prioritised. The identification 
and categorization of network traffic flows aids network administrators in quickly 
diagnosing problems, network capacity planning tasks and identifying misuse of the 
provisioned resources (Wright et al., 2006). 
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In times past, network administrators extracted Open System Interconnection (OSI) 
layer 4 port and protocol information from packet headers to identify and classify 
traffic. This method is not suitable in today’s next generation networks as the ports 
and protocols used for a particular flow are chosen by the two communicating hosts. 
Hosts can therefore negotiate alternative layer 4 information, bypassing various 
filters and restrictions (Alshammari & Zincir-Heywood, 2008). The inefficiency of 
port-based classification methodologies in successfully matching these evasive 
protocols forced researchers to consider a number of alternatives. 

Deep Packet Inspection (DPI) serves as one such alternative, aiming to solve these 
problems by tracking each flow's OSI layer 7 protocol information, applying 
predefined signatures and searching the packet’s payload for string matches. This 
method of traffic identification can be extremely accurate, as long as the underlying 
payload is not encrypted or otherwise opaque (Alshammari & Zincir-Heywood, 
2008). DPI is often applied to the first few packets of a connection, since the layer 7 
protocol information is exchanged at the very beginning of the connection.

Whilst DPI has proven its worth as a flow classification methodology, it falls short 
when inspecting opaque application protocols such as encrypted traffic flows. It has 
been argued that much information can be inferred about a traffic flow by observing 
various statistical characteristics of each flow.

This paper is proposes a set of discriminators which, when used in conjunction with 
one another, provide enough granularity to accurately identify an application 
protocol in real-time, within the first few packet exchanges of newly established 
flows. The premise of this paper is that by the marriage of statistical and DPI 
discriminators, a suitable granularity of flow information can be inferred within the 
first 4 payload-carrying packets of host-to-host data exchange. This process is 
demonstrated through experimentation, discriminating a group of applications from 
one another.

2. Related Work

A significant amount of research has been conducted in the identification of the 
underlying application protocol at the early stage of a network flow's existence, 
through statistical analysis and DPI. For example, Bernaille et al. (2006) describes a 
statistical method of grouping Transport Control Protocol (TCP) flows which exhibit 
similar behaviour, using K-Means, Gaussian mixture model, and spectral on Hidden 
Markov Model techniques. According to Bernaille et al. (2006), packet size 
information obtained during the first few packet exchanges of a flow serve as a good 
metric for identifying the underlying application protocol. Gargiulo et al. (2009) 
asserts that significant accuracy can be achieved in identifying a flow's application 
protocol by examining the direction of the first four packets along with the payload 
sizes of each. Moore & Papagiannaki (2005) argue that in some cases, the accuracy 
achieved by observing the first payload-bearing packet is enough to identify the 
protocol, whilst in others up to 1Kbyte of payload is required before a decision is 
made. Various statistics including minimum, average and maximum packet lengths 
derived from a flow are described by Alshammari et al. (2007) as suitable 
discriminators for identifying a flow’s underlying application protocol. 
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The ideas set forth by this paper are built on the observations of these works, verified 
through experimentation. 

3. Methodology

The authors conducted a number of experiments in order to determine a base set of 
discriminators, which would be granular enough to distinguish application protocols 
from one another. Each experiment built on the discriminator set used by its 
predecessor, creating a more complex, granular classifier. The results of these 
experiments are presented at the end of this paper, providing a strong set of 
discriminators for use in the early identification process.

The objective of the experiments was to define a set of discriminators which, when 
applied to early packet data, would provide enough granularity to uniquely identify 
each application protocol, rather than simply group them by their operational 
characteristics as described by Zuev & Moore (2005).

4. Experimentation

A literature study was undertaken to determine popular discriminators for 
consideration in the final flow identification engine. The selected discriminators 
served as input vectors for use in training and testing a number of neural networks, 
each for a unique protocol.

Discriminators that rely on capturing the complete flow were stripped from the list of 
potentials as this hinders early, real-time detection. The list of literature reviewed and 
a summarized output of the common discriminators proposed are outlined in Table 1.
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Li, Z. et al. (2007) x x x x
Auld, T. (2007) x
Bernaille, L. et al. (2006) x x x
Este, A. et al. (2008) x x
Gargiulo, F. et al (2009) x x x
Moore, A. W. et al (2005) x x x x x
Moore, A. et al (2005) x x
McGregor, A. et al (2004) x x
Huang, K. et al (2008) x
Alshammari, R. et al. (2007) x x

Table 1: Popular Discriminators in Flow Detection

According to Table 1, certain flow attributes were more popular than others. These 
discriminators, including the Destination Port, Source Port, Payload Statistics, Packet 
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Order Direction, Packet Inter-Arrival Time and Deep Packet Inspection were 
considered for the experiments of this paper. Of these discriminators, those which 
bore reference to packet header information (DST and SRC ports) were removed, 
preventing the effect of client or server port manipulation. Packet Inter-Arrival Time 
(PKT IAT) was also removed from consideration, due to its dependence on the 
latency of the communications medium, traffic shaping mechanisms and congestion 
at any given time. 

Experimental data was collected using a 60 minute snapshot of network traffic flows 
recorded on a Local Area Network (LAN) segment at a large corporate 
establishment.

At the end of the recording process, each flow was manually identified and marked 
by the authors for verification purposes. In accordance with Bernaille, L. et al (2006) 
and Gargiulo, F. (2009), only Transport Control Protocol (TCP) flows were recorded 
as part of the snapshot flow set. Furthermore, flows where the initial synchronize 
(SYN) packet was not observed were excluded as the discriminators rely on the first 
few packet exchanges of each flow. Table 2 provides a break down of the remaining, 
manually identified flows.

Protocol Recorded Flows

HTTP 4452

HTTPS 3147

SSH 392

FTP 102

POP3 62

SMTP 17
Table 2: Observed Network Traffic Flows

Based on the direction of the initial SYN packet, both the client and the server host 
can be identified and thus the direction of packet flow. Packets with no payload were 
assumed to be normal TCP control packets, which provide the reliable transport 
platform for the encapsulated application protocol operations.

Artificial Neural Networks (ANN) were used as classifiers in the experiments, 
therefore the inputs needed to meet basic ANN requirements, falling within the 
bounds of 0.0 and 1.0. The authors accomplished this by the application of a 
sigmoidal logistic regression function, producing a probability value between 0 and 
1.

The application flows captured were used to train a variety of Feed-forward, Back 
Propagation Artificial Neural Networks. A neural network was created and trained 
for each of the six application protocols identified in table 2. A subset of flow 
discriminators were chosen for each of the experiments, incorporating the 
discriminators used by their predecessor. For each experiment, the training set values 
were passed through each neural network and the accuracy of the results noted. 
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For consistency, each neural network consisted of a number of inputs which matched 
the number of discriminators for that experiment’s particular feature subset. Directly 
connected to each of the input neurons was a second, hidden layer whose neuron 
count matched that of the input layer. Finally, a single neuron, connected to each of 
the neurons in the hidden layer, represented the output layer. The output neuron was 
responsible for producing a decimal value between 0 and 1, indicating the certainty 
that the inputs provided matched the protocol the neural network was trained to 
identify. 

The extracted discriminators from the flow snapshot were fed to each neural network 
in turn over a period of 1000 iterations. The flows which the network should match 
were marked with a “1” as an expected output, whilst those the network should not 
match a “0”. For example, the neural network created to match the Hypertext 
Transfer Protocol (HTTP) would have all HTTP flow inputs marked with a 1, whilst 
the remaining 5 input sets marked with a 0.

After a successful training session, the inputs and their respective outputs were once 
more passed through each neural network in order to determine accuracy. The actual 
output for each discriminator input set was compared to the expected output and the 
variance noted. A separate score was tallied for matching both the expected 0 
(correctly identifying a protocol other than the one the network was trained to 
identify) and expected 1 (correctly identifying a protocol the network was trained to 
identify). A high degree of accuracy is required in order to demonstrate a clear 
discrimination between the various protocols across each of the 6 trained neural 
networks.

5. Experiment 1: Directional Discrimination

The first discriminator set tested included the directions for each of the first 4 
payload-bearing packet exchanges. Client to server packets were marked with a 0, 
whilst server to client packets with a 1. The observed patterns for each protocol and 
the number of times each were detected are shown in Table 3. 

FTP HTTP HTTPS SSH POP3 SMTP

0100 4

0101 98 62 17

0110 392

1000 2105 1428

1001 254 287

1010 1856 1166

1011 21 242

1100 216 12

Table 3: Payload-carrying Packet Directionality
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Table 4 denotes the results observed, post training process, when passing each 
network’s training set through it and comparing the actual result to the expected 
result. The probability for each expected case was determined and the average 
percentile achieved noted. A well trained classifier is expected to reach an average 
probability score in excess of 90%, indicating its level of understanding of the data 
within the training set.

FTP HTTP HTTPS SSH POP3 SMTP

EXPECT 0 99.42% 99.34% 99.14% 99.97% 99.59% 99.86%

EXPECT 1 50.13% 0.93% 1.37% 98.73% 35.97% 7.29%

Table 4: Results of Experiment 1

Table 5 details the results observed when a single flow of each application protocol 
was passed through each of the neural networks, gauging their effectiveness in 
recognizing them.

Protocol Ordered Classifier Probability Results
FTP FTP (48.28%) POP3 (35.97%) SMTP (7.29%) SSH (1.23%) HTTPS (0.43%) HTTP (0.01%)

HTTP HTTP (1.33%) HTTPS (0.70%) SMTP (0.01) POP3 (0.00%) FTP (0.00%) SSH (0.00%)

HTTPS HTTP (1.33%) HTTPS (0.70%) SMTP (0.01%) POP3 (0.00%) FTP (0.00%) SSH (0.00%)

SSH SSH (99.74%) HTTPS (0.20%) SMTP (0.12%) FTP (0.11%) POP3 (0.08%) HTTP (0.01%)

POP3 FTP (48.28%) POP3 (35.97%) SMTP (7.29%) SSH (1.23%) HTTPS (0.43%) HTTP (0.01%)

SMTP FTP (48.28%) POP3 (35.97%) SMTP (7.29%) SSH (1.23%) HTTPS (0.43%) HTTP (0.01%)

Table 5: Experiment 1 - Classifier Accuracy in Identification

6. Discussion

Experiment 1 illustrates that using even a limited number of discriminators; a fair 
degree of certainty can be inferred upon the flow’s underlying application protocol. 
FTP, SSH, POP3 and SMTP protocols exhibited similar characteristics in that the 
first packet originated from the server to the client, whilst the HTTP and HTTPS 
flows first payload-carrying packet was from the client to the server. Table 3 shows 
the similarities between HTTP and HTTPS in the direction of packet flows – 
something expected as HTTPS is essentially an encrypted HTTP stream. These 
similarities in directionality explain why the training process resulted in the HTTPS 
and HTTP neural networks providing low degrees of accuracy. POP3, SMTP and 
FTP also exhibit directionality similarities and thus suffer from inaccurate distinction 
at this level. Table 5 shows that the FTP classifier incorrectly scored higher than the 
SMTP and POP3 protocols for their own protocol test. Furthermore, in the case of 
SMTP, both the FTP and POP3 classifiers exhibited a higher probability than the 
SMTP protocol itself. SSH is the only protocol that does not share directionality 
discriminators, hence the high degree of accuracy in matching both SSH and “other” 
protocols (99.97% and 98.73% respectively) with so few discriminators. The 
grouping of multiple protocols into distinct classes using directional discriminators 
was also noted by Bernaille, L. et al (2006), Este et al. (2008) and Gargiulo, F. et al 
(2009).
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7. Experiment 2: Direction and Packet size Statistics

The second experiment built on the first by adding the average, minimum and 
maximum payload sizes for the first 4 payload-carrying packets to the discriminator 
set. The inputs thus grew from 4 in the first experiment, to 7 in the second. 

After the training process had completed, the following results were observed.

FTP HTTP HTTPS SSH POP3 SMTP

EXPECT 0 99.52% 99.85% 99.87% 99.98% 99.89% 99.86%

EXPECT 1 60.61% 33.50% 18.21% 98.99% 10.02% 7.86%

Table 6: Results of Experiment 2

Table 7 details the results observed when a single flow of each application protocol 
was passed through each of the neural networks, gauging their effectiveness in 
recognizing them.

Protocol Ordered Classifier Probability Results
FTP FTP (46.12%) POP3 (10.71%) SMTP (7.64%) HTTP (0.55%) SSH (0.38%) HTTPS (0.10%)

HTTP HTTP (42.47%) HTTPS (0.03%) SMTP (0.00%) POP3 (0.00%) FTP (0.00%) SSH (0.00%)

HTTPS HTTPS (39.43%) SSH (0.00%) HTTP (0.00%) SMTP (0.00%) POP3 (0.00%) FTP (0.00%)

SSH SSH (99.91%) SMTP (0.09%) HTTPS (0.06%) POP3 (0.01%) FTP (0.00%) HTTP (0.00%)

POP3 FTP (46.24%) POP3 (9.94%) SMTP (7.72%) SSH (0.43%) HTTP (0.30%) HTTPS (0.12%)

SMTP FTP (46.09%) POP3 (8.85%) SMTP (7.86%) SSH (0.48%) HTTP (0.26%) HTTPS (0.12%)

Table 7: Experiment 2 - Classifier Accuracy in Identification

8. Discussion

Experiment 2 increased the granularity of the flow information by including 
additional discriminators.  Flows which exhibit small payload exchanges, including 
real-time applications such as SSH, will over the course of the flow exhibit a much 
lower average payload size than that of a bulk transfer application such as HTTP. 
Experiment 2 tested if this was plausible within the first 4 packet exchanges. The 
results of experiment 2 clearly indicate an increase in accuracy for all but one 
protocol, POP3. Although HTTP and HTTPS bare resemblance in packet 
directionality patterns, packet size variances between the two protocols as early as 
the first 4 packets appeared evident. This increase in identification ability is 
indicative of strengthening pattern identification within the protocol as the packet 
size statistic discriminators are added to the discriminator set. Table 7 indicates that 
using packet size statistics, HTTP is now more discernable from HTTPS and thus the 
probability score for HTTPS correctly placed the HTTPS classifier as the identifier 
for the HTTPS protocol. No change was noted for the probability positioning for the 
SMTP and POP3 classifiers.
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9. Experiment 3: Direction, Packet Size and Payload

The final experiment conducted was an attempt to combine the statistical 
classification process with that of DPI. DPI is most commonly implemented using 
regular expressions, attempting to match patterns within strings. The motivation for 
this 3rd experiment was the assumption that application protocols require a certain 
amount of initialization before any data exchange could take place and that this 
initialization will take place within the first few payload-carrying packets of a flow. 
For this reason, the first 3 bytes of payload from the first 2 payload-carrying packets 
were extracted and converted to their ASCII integer values. These 6 new values were 
then included in the discriminator set from experiment 2, bringing the total neural 
network inputs to 13.A set of 6 new neural networks were created and the new 
training sets applied.

The subsequent results were reported as follows:

FTP HTTP HTTPS SSH POP3 SMTP

EXPECT 0 99.99% 99.94% 99.94% 99.99% 100.00% 99.99%

EXPECT 1 98.17% 99.88% 99.80% 99.88% 98.86% 96.79%

Table 8: Results of Experiment 3

The results observed when passing a single instance of each of the 6 application 
flows to each neural network are recorded in table 9.

Protocol Ordered Classifier Probability Results

FTP FTP (98.07%) SMTP (0.087%) SSH (0.50%) POP3 (0.10%) HTTP (0.00%) HTTPS (0.00%)

HTTP HTTP (99.93%) HTTPS (0.06%) SMTP (0.00%) POP3 (0.00%) FTP (0.00%) SSH (0.00%) 

HTTPS HTTPS (99.95%) HTTP (0.14%) SSH (0.00%) SMTP (0.00%) POP3 (0.00%) FTP (0.00%)

SSH SSH (99.92%) FTP (0.02%) HTTP (0.00%) SMTP (0.00%) HTTPS (0.00%) POP3 (0.00%)

POP3 POP3 (99.06%) SSH (0.84%) SMTP (0.41%) HTTP (0.07%) HTTPS (0.00%) FTP (0.00%)

SMTP SMTP (96.92%) FTP (2.36%) POP3 (1.00%) SSH (0.53%) HTTP (0.00%) HTTPS (0.00%)

Table 9: Experiment 3 – Classifier Accuracy in Identification

10. Discussion

Experiment 3 provided the most promising results as DPI discriminators were added 
to the directional and payload size discriminator set. The results recorded indicate the 
best understanding by each network across the board for all protocols. The increased 
granularity and uniqueness in application protocol initialization exchanges in the first 
few bytes of communication between hosts is to thank for this. Although HTTP and 
HTTPS share similarities in directional and payload size discriminators, the 
underlying payload of HTTP is plain-text, whilst HTTPS is encrypted. HTTPS will 
therefore use SSL control bytes during the first few packets of the data exchange, 
whilst HTTP will begin with HTTP request arguments. Further, whilst POP3 and 
SMTP exhibited similarities in their directional and payload size statistics, the 
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underlying payload was very different. SMTP servers respond to newly established 
sockets by sending a “220”, followed by a server message. POP3 servers will 
respond to new clients with “+OK” followed by a short string. This difference in 
early application protocol exchange clearly distinguishes the one protocol from the 
other. Table 9 indicates exact matching for each of the selective flow tests, with the 
closest second matching classifier reporting a variance of 94.56% to the nearest rival 
in the case of SMTP. The authors believe this may be accredited to the lack of flows 
captured for the SMTP protocol when compared with the others.

11. Conclusion

The observed results conclude that the marriage of statistical and DPI discriminators 
form the best possible chance for accurately discerning one protocol from another at 
the early stages of a network traffic flow. Furthermore, increasing the number of 
discriminators to the neural networkincreased the granularity of the application 
protocol, creating a better possibility for pattern identification between protocols and 
thus higher degrees of accuracy in identification.

Increasing the granularity of flow information over the course of 3 experiments 
produced an increasing accuracy in identifying each protocol. Furthermore, similar 
protocols exhibited a decline in their probability scores, indicating increased 
understanding of the protocol each were trained to identify.

This paper therefore proves that it is possible to identify and classify application 
protocol flows in real-time, at the beginning of the flow, using discernible flow 
characteristics such as packet directionality, packet size statistics and DPI. This 
paper further concludes that it is possible to apply this technique to encrypted and 
plain-text flows alike and that due to the removal of dependence on packet header 
information, it is possible to detect these protocols on any port or protocol.
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