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Abstract 

In this paper we describe two novel methods for active detection and prevention of ARP-
poisoning-based Man-in-the-Middle (MitM) attacks on switched Ethernet LANs. As a 
stateless and inherently insecure protocol, ARP has been used as a relatively simple means to 
launch Denial-of-Service (DoS) and MitM attacks on local networks and multiple solutions 
have been proposed to detect and prevent these types of attacks. MitM attacks are particularly 
dangerous, because they allow an attacker to monitor network traffic and break the integrity of 
data being sent over the network. We introduce backward compatible techniques to prevent 
ARP poisoning and deal with sophisticated stealth MitM programs. 
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1. Introduction 

Address Resolution Protocol (ARP) (Plummer, 1982) is an essential component of 
communication in an Ethernet LAN environment. It provides a mechanism to 
translate logical network addresses into physical (MAC) addresses which are 
required for the exchange of packets on a local network. 

ARP is a stateless protocol designed without security in mind, which makes it an 
ideal means for launching DoS and MitM attacks on a LAN. By sending spoofed 
MAC addresses in ARP reply packets, a malicious host can poison the ARP cache of 
other hosts on the local network and thereby easily redirect network traffic. 

To mitigate the danger of ARP-based attacks on local networks, multiple techniques 
have been proposed to detect and prevent attacks by malicious hosts. Detection of 
ARP poisoning is usually performed by specialized network tools, such as 
arpwatch (LBNL Network Research Group, n.d.), or Intrusion Detection Systems. 
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In (Carnut & Gondim, 2003) and (Trabelsi & Shuaib, 2007) the authors propose 
delegating the detection to specialized detection or test stations. 

For prevention of ARP-based attacks, a simple solution consists of using static ARP 
entries in the ARP cache. This solution, however, doesn’t scale well especially in 
heterogeneous networks with dynamic IP addressing. Other solutions include use of 
cryptography for authenticating ARP replies (Bruschi et al., 2003), (Goyal & 
Tripathy, 2005), (Lootah et al., 2007), artificial intelligence (Trabelsi & El-Hajj, 
2007), or hardware support for dynamic ARP inspection (Cisco Systems, 2009). 

We have developed two methods for detection and prevention of ARP-poisoning-
based MitM attacks. For simplicity and convenience, we call these Method 1 and 
Method 2, respectively. Our motivation was to find ways to cope with increasingly 
sophisticated MitM attack tools, while still maintaining backward compatibility with 
existing ARP implementations. We avoided the use of specialized computers as 
helpers in the attack detection process, in contrast with several of the aforementioned 
methods which require the use of such computers (e.g. a test station or a CA server). 

Method 1, described in Section 2, uses certain techniques proposed in (Trabelsi & 
Shuaib, 2007), but brings several improvements in the approach to detection. Instead 
of relying on a test host to detect potential attacks, each host performs detection by 
itself. This eliminates the need for a test host, which is a single point of failure, and 
makes it possible to extend Method 1 to perform distributed and coordinated 
detection with multiple hosts. Moreover, with Method 1 detection is triggered by a 
reception of one or more ARP replies and targets only the hosts who send these 
replies, instead of scanning the whole network in the search of potential attackers. 

Method 2, introduced in Section 3, addresses limitations of Method 1 in dealing with 
sophisticated MitM attack tools. It relies on a novel technique for detection of MitM 
attacks on switched Ethernet LANs through modification of the switch CAM table in 
a way which makes the detection transparent to the MitM host. 

2. Method 1 – Reverse ARP poisoning with active IP probing 

Method 1 consists of the following two steps: 

1. Reverse ARP poisoning – A host implementing reverse ARP poisoning 
sends an ARP reply as a response to every ARP reply it receives from other 
hosts. The purpose of this reverse ARP reply is to poison the ARP cache of 
attacking hosts. 

2. Active IP probing – Active IP probing is then used to differentiate between 
legitimate hosts and MitM hosts. This step consists of sending a single IP 
packet to the host from which the initial ARP reply was received and 
analyzing the response. For simplicity, in this document we use probe 
packets containing simple ICMP echo requests, even though it may 
generally be more reliable to use TCP or UDP instead of ICMP. 
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The best way to illustrate the workings of Method 1 is to see it in action. For this 
purpose, we use two common scenarios. 

In the first scenario, we analyze the packet exchange in the case of a legitimate host 
sending an ARP reply. The second scenario will then show how Method 1behaves 
when a MitM host attempts to carry out an ARP poisoning attack. 

Figure 1 is used as a reference for both scenarios. We assume that all three hosts, 
HostA, HostB and HostX, are on the same Ethernet LAN. Furthermore, HostA 
and HostB are legitimate hosts and HostX is a MitM attacker. Also, HostA uses a 
regular implementation of ARP, as found in modern operating systems. HostB, on 
the other hand, implements Method 1, and thus handles ARP traffic in a different 
way, as will be described shortly. 

 

Figure 1: An ARP poisoning attack on a switched LAN 

2.1. Scenario 1 – Legitimate ARP reply 

In this scenario, HostA sends a legitimate ARP reply to HostB. We can follow the 
exchange of packets generated as Method 1is employed: 

1. HostA sends an ARP reply packet to HostB. Since this is a legitimate 
ARP reply, it contains the mapping between HostA_IP and HostA_MAC. 

2. HostB executes the first step of Method 1, and immediately sends an ARP 
reply back to HostA attempting to poison its ARP cache. In this ARP reply 
HostB maps HostA_IP to HostB_MAC. Since, however, HostA is the 
owner of HostA_IP, it simply drops this ARP reply with the invalid 
mapping. 

3. HostB then continues to the second step of Method 1 and sends an ICMP 
echo request packet addressed to HostA_IP with HostA_MAC as the 
destination MAC address in the Ethernet frame header. 
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4. HostA receives the ICMP echo request and responds to HostB with an 
ICMP echo reply. For HostB this is an indicator that the reverse ARP 
poisoning attempt was unsuccessful and that the ARP reply sent by HostA 
is a legitimate one. 

5. As a result, HostB stores the mapping HostA_IP ↔ HostA_MAC in its 
ARP cache. 

2.2. Scenario 2 – ARP poisoning attempt 

In this scenario the attacking host HostX attempts to poison the ARP cache of 
HostB in order to impersonate HostA. This should allow the attacker to hijack all 
traffic going from HostB to HostA. Since HostB implements Method 1, the 
exchange of packets in this case will be as follows: 

1. The first packet is an ARP reply sent from HostX to HostB. This ARP 
reply contains the mapping between HostA_IP and HostX_MAC. If 
HostB had a regular implementation of ARP, it would accept this ARP 
reply and store the incorrect mapping in its ARP cache. From that point on, 
HostB would deliver all network traffic destined to HostA_IP to 
HostX’s network interface. 

2. Nevertheless, HostB handles ARP traffic in compliance with Method 1, so 
instead of blindly accepting the ARP reply from HostX, HostB begins the 
detection procedure by sending a reverse ARP reply to HostX. This ARP 
reply contains the mapping between HostA_IP and HostB_MAC. 
Assuming that the attacking host (i.e. HostX) uses an unmodified 
implementation of ARP, the reply sent by HostB will poison its ARP 
cache. 

3. HostB proceeds with the MitM detection by delivering an ICMP echo 
request packet, destined to HostA_IP, to HostX’s network interface (by 
using HostX_MAC as the destination in the Ethernet frame header). 

4. HostX is acting as a MitM attacker, so it attempts to forward this ICMP 
echo request packet to HostA. However, since HostX’s ARP cache has 
previously been poisoned by HostB, HostX delivers the probe packet to 
HostB’s MAC address. This effectively means that the same packet sent in 
the previous step by HostB will be returned to it by HostX. The detection 
of a duplicate packet is a clear indicator for HostB that reverse ARP 
poisoning was successful and that HostX is a MitM attacker. 

5. HostB thus drops the initial ARP reply sent by HostX. Since at this point 
an intrusion attempt has been detected, HostB can generate a real-time 
intrusion alert and log the intrusion attempt for the purpose of a future 
forensic investigation. 
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3. Method 2 – IP probing with CAM table poisoning 

Method 1, described in Section 2, works well for detection of MitM computer 
systems which rely on the operating system built-in routing and ARP functions. 
There are, however, much more sophisticated MitM programs, which take full 
control over packet forwarding. This allows these programs to disguise themselves 
very well in order to evade detection. One popular program which falls into this 
category is the well-known Cain & Abel (Montoro, n.d.). 

Cain & Abel doesn’t rely on the ARP and routing functions of the operating system, 
but instead maintains its own mappings between IP addresses and MAC addresses. 
The program utilizes these private mappings when forwarding frames between hosts 
on the network. This makes it insusceptible to reverse ARP poisoning, which is the 
basis of Method 1. 

In order to be able to detect any MitM host, regardless of the way it handles routing 
of packets between other hosts in the network, we need to influence flow of packets 
in a way which is beyond control of the MitM host. 

In the following paragraphs, we describe one method to achieve this, which we call 
Method 2 for brevity and simplicity. Figure 2 will serve as a reference for our 
description of Method 2. 

 

Figure 2: Physical connection of hosts in our LAN 

During normal operation of the switch, its CAM (in order to minimize switching 
latency, Ethernet switches store the mappings between MAC addresses and switch 
ports in a table inside a special Content-Addressable Memory) table contains the 
mappings shown in Table 1. 
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MAC Address Port 

HostA_MAC 1 

HostB_MAC 7 

HostX_MAC 3 

Table 1: Switch CAM table during normal operation 

We again assume that HostX wants to redirect traffic between HostA and HostB 
through the use of ARP poisoning. HostA uses a regular implementation of TCP/IP, 
including ARP, and HostB employs Method 2. We can now follow the use of 
Method 2 through the following flow of events: 

1. HostX sends an ARP reply to HostB. This ARP reply contains the mapping 
between HostX_MAC and HostA_IP. 

2. Before entering this mapping into its ARP cache, HostB begins executing 
Method 2, whose first step is broadcasting of an ARP request for HostA_IP. 

3. As a result of this ARP request, HostB receives two replies with two different 
MAC address mappings for HostA_IP: one reply comes from HostA with 
HostA_MAC and the other is from the attacker with HostX_MAC. Method 2 
doesn’t require these two replies to reach HostB in any particular order. 

4. The reception of two different MAC addresses for a single IP address is a first 
indicator for HostB that one of them comes from a MitM attacker. Thus, 
HostB continues with the next step of Method 2, which is sending multiple 
ICMP echo request packets out its network interface. All these packets carry 
HostB_IP as the source IP address and HostA_IP as the destination IP 
address in their IP header. However, their Ethernet frame header may contain 
one of the following two combinations of MAC addresses: 

(a) HostX_MAC is the destination MAC address and HostA_MAC is the 
source MAC address, 

(b) HostA_MAC is the destination MAC address and HostX_MAC is the 
source MAC address. 

5. To understand the purpose of using these two MAC address combinations, let 
us analyze what happens when HostB sends two ICMP echo request packets 
addressed as in 4a and 4b, respectively: 

(a) The frame, addressed as specified in 4a leaves HostB and enters the 
switch through port #7. Based on the entries in its CAM table (see Table 
1), the switch forwards the frame to HostX through port #3. Meanwhile, 
since the frame with source MAC address HostA_MAC entered the 
switch through port #7, the switch updates its CAM table with a new 
mapping for HostA_MAC so the CAM table now has the contents shown 
in Table 2. HostX receives the frame, looks up the destination IP address, 
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and forwards the frame immediately towards HostA, specifying 
HostA_MAC as the destination MAC address. Once this frame reaches 
the switch, two possibilities exist: 

i. If the switch CAM table still contains the mapping between 
HostA_MAC and port #7, the switch will forward the frame out 
through port #7. HostB receives its own ICMP echo request packet, 
which is an indicator that HostX attempted to forward this frame to 
HostA. This means that HostX is not the real owner of HostA_IP, 
but a MitM attacker. 

ii. If, in the meantime, HostA sent some network traffic through switch 
port #1, the original mapping of HostA_MAC to port #1 in the CAM 
table of the switch will have been restored. In this case, the switch 
forwards the ICMP echo request through port #1 to HostA, and 
HostA responds by sending an ICMP echo reply packet back to 
HostB. In this case HostB cannot conclude with certainty that 
HostX forwarded the frame to HostA. 

(b) The frame, addressed as specified in 4b enters the switch through port #7, 
and switch forwards it through port #1 to HostA. Since the source MAC 
address of this frame is HostX_MAC, the switch maps HostX_MAC to 
port #7 in its CAM table. Table 3 shows the new mapping. When HostA 
receives the ICMP echo request packet, it builds a response in form of an 
ICMP echo reply packet with source IP address HostA_IP and 
destination IP address HostB_IP. 

i. Assuming that HostA’s ARP cache has been previously poisoned by 
HostX, the response packet will be sent in a frame addressed to 
HostX_MAC. If the contents of the CAM table haven’t been modified 
in the meantime (i.e. they are still as shown in Table 3), the switch will 
deliver this frame through port #7 to HostB. If, on the other hand, 
HostX generated some network traffic while HostA was preparing 
the response, the CAM table will have returned to its original state 
(see Table 1). Thus, the switch will send the response packet from 
HostA to HostX through port #3. Because HostX is a MitM host, it 
will forward the response to HostB. 

ii. If the ARP cache of HostA hasn’t been modified, it will contain a 
correct mapping between HostB_IP and HostB_MAC. Therefore, 
the ICMP reply packet from HostA will be sent to HostB_MAC and 
delivered by the switch through port #7 to HostB. 

We see that, in either case, using the MAC address combination given in 4b results 
in an ICMP echo reply packet being sent to HostB. In other words, it can not 
happen that in the given scenario an ICMP echo request packet with source MAC 
address HostX_MAC and destination MAC address HostA_MAC gets delivered 
back to HostB. 
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MAC Address Port 

HostA_MAC 7 

HostB_MAC 7 

HostX_MAC 3 

 
Table 2: Switch CAM table after 
HostB sends a frame from HostA 

MAC to HostX MAC through port #7 

MAC Address Port 

HostA_MAC 1 

HostB_MAC 7 

HostX_MAC 7 

 
Table 3: Switch CAM table after 
HostB sends a frame from HostX 

MAC to HostA MAC through port #7 

When, on the other hand, the combination of source and destination MAC addresses 
is specified as in 4a, it is possible for the original ICMP echo request packet to be 
delivered back to HostB (see 5(a)i), though it may also happen that HostB receives 
an ICMP echo reply from HostA (see 5(a)ii). The latter case cannot generally be 
distinguished from the case described in 5b, which uses frames addressed as in 4b. 

Therefore, we must ensure that a host implementing Method 2 (in our case, HostB) 
quickly sends multiple ICMP echo request packets with both combinations of source 
and destination MAC addresses given in 4a and 4b. To identify the MitM host it 
suffices for HostB to receive only one of its own ICMP echo request packets back 
through its network interface. 

Method 2 alters the CAM table of the switch so that some frames destined to HostA 
are delivered to HostB (see Table 2). To restore the original mapping of 
HostA_MAC to port #1 (see Table 1), HostB may broadcast an ARP request for 
HostA_IP. This would force HostA to send back an ARP reply and thereby help 
switch reassociate its MAC address with port #1. 

Notice that, for Method 2 to work, HostB’s network card must be put into 
promiscuous mode (when a network card operates in promiscuous mode, it accepts 
all traffic and passes it to the central processing unit, even if this traffic is not 
addressed to that particular network card), so it can collect the hijacked frame which 
HostX attempts to forward to HostA. Another important assumption is that HostA 
was not subject to a DoS attack, so it was able to respond to our ARP requests. 

4. Results 

We ran multiple tests on a switched Ethernet LAN to test the effectiveness of 
Method 1 and Method 2 in detecting ARP-poisoning-based MitM attacks. In all these 
tests our setup was as depicted by Figure 2. HostA and HostB were running 
Windows XP and Linux respectively, and the operating system of HostX changed as 
required by the tests. Using several common tools, we performed MitM attacks from 
HostX, attempting to poison the ARP cache of HostA and HostB. The role of 
HostB was to detect these attack attempts by employing Method 1 and Method 2. 
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4.1. Detecting Ettercap and dsniff with Method 1 

In the first test HostX (running Backtrack Linux) performed attacks against ARP 
cache of HostA and HostB using two mainstream attack tools, Ettercap 
(Ornaghi & Valleri, n.d.) and arpspoof with dsniff (Song, n.d.). 

HostB was set up to perform attack detection with Method 1. Since Ettercap and 
dsniff rely on the operating system built-in ARP and routing functions, we were 
able to successfully perform reverse ARP poisoning and detect all the attacks 
through active IP probing (i.e. Method 1) with 100% accuracy. 

4.2. Detecting Cain & Abel with Method 1 

For the purpose of this test we booted HostX into Windows XP and launched 
multiple MitM attacks against HostA and HostB using Cain & Abel. This time, 
however, HostB failed to detect any of our attacks. Knowing that Cain & Abel uses 
its own IP-to-MAC address mappings when forwarding packets, this was expected. 

4.3. Detecting Cain & Abel with Method 2 

As we know from Section 3, when using Method 2 HostB poisons the CAM table 
of the switch in order to capture the frame which HostX attempts to forward 
towards HostA. This is not a big problem when HostA is idle. If, however, HostA 
is actively communicating, this creates a race between HostA and HostB. 
Depending on the rate at which HostA sends out packets into the network, it may be 
more or less difficult for HostB to win the race and hijack the packet required for 
detection of the MitM attack. 

To test the effectiveness of Method 2, we set up HostA to send many thousands of 
packets per second into the network and measured the attack detection ratio, whereby 

es senter of probTotal numb

s detectionsuccessfulNumber of 
 ratio Detection   

During these tests, HostB was sending either single probe packets or series of 3, 5 
or 7 packets per probe. The results of our measurements are summarized in Figure 3. 

We notice that the success of detection depends on the number of packets sent in a 
single probe. The rather low detection ratio of 30% for single-packet probes was 
doubled by sending three packets in each probe. Further increases in number of 
packets per probe to five and seven raised the detection ratio to 80% and 90% 
respectively. 

It is also obvious that the detection ratio doesn’t depend on the rate at which HostA 
sends packets into the network. If we neglect the variations in the value of the 
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detection ratio, which exist due to a stochastic nature of real-time network 
communication, we can consider all four curves in Figure 3 as constants. 

 

Figure 3: Success in detection of Cain & Abel with Method 2 

5. Limitations of Method 1 and 2 

Both the theoretical discussion and results of our experiments have revealed certain 
limitations of both proposed methods. 

As we know from Sections 2 and 4.2, the biggest limitation of Method 1 is its 
inability to handle detection of MitM attack tools which use their own IP-to-MAC 
address mappings for forwarding packets (e.g. Cain & Abel). Even though Method 2 
solved this problem, other factors exist which may limit its effectiveness. 

In the third step of the detection process with Method 2, we assumed that HostB 
receives ARP replies for HostA_IP from both HostA and HostX. While this is 
generally the case, HostX might as well launch a DoS attack against HostA, 
preventing it from successfully delivering its ARP reply to HostB. This way only 
HostX’s ARP reply would reach HostB, rendering Method 2 useless. 

The results of our experiments in Section 4.3 have shown that the effectiveness of 
Method 2 depends on the number of packets sent in a single probe. Sending too 
many probe packets, however, may cause disruption in traffic flow towards HostA, 
due to the fact that HostB temporarily hijacks all LAN traffic destined to 
HostA_MAC. This problem may be solved by storing the hijacked packets in a 
queue on HostB and delivering them back to HostA after the probe. 



Proceedings of the Sixth International  
Workshop on Digital Forensics & Incident Analysis (WDFIA 2011) 

 

91 

6. Conclusion 

In this paper we have described two novel methods for detection and prevention of 
ARP-based MitM attacks on switched Ethernet LANs. Both methods work as 
extensions to the ARP protocol and don’t interfere with normal ARP operation. 
Therefore, both these methods can co-exist on the same LAN with regular ARP 
implementations and are thus suitable for incremental deployment. We have seen 
examples of such co-existence in experiments in which one host (HostB) used either 
Method 1 or Method 2, while another host (HostA) used default implementation of 
ARP as provided by the operating system. 

Even though both our methods can be used to identify and prevent ARP poisoning 
attacks, an ultimate solution to the problem of ARP insecurity can only be provided 
through an improved version of the ARP protocol, which would be backwards 
compatible and would allow for an incremental implementation. In (Abad and 
Bonilla, 2007) the authors have given a definition of an ideal solution for prevention 
of ARP-based attacks, which may be the first step towards reaching this goal. 
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