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Abstract

Image feature selection is an important issue for source camera identification. Well-selected
features should make camera classifiers accurate, efficient as well as robust. Current source
camera identification schemes select image features mainly based on classification accuracy
and computational efficiency. In this work, we demonstrate that robustness should also be
considered for classifiers which aim at real-world tasks. Besides, we reveal what impact the
reduced feature subset will have on the robustness of camera classifiers. The dimensionality
reduction is often necessary for computational efficiency.
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1. Introduction

Statistical image features are important clues for uncovering image origin and tracing
back source imaging devices. Most statistical image features employed for these
purposes were investigated in steganalysis, for example, the statistics of wavelet-like
decomposition of natural images and the statistics of prediction errors of wavelet
coefficient magnitude (Farid and Lyu, 2002), and the image quality metrics (IQMs)
(Avcibas et al., 2003). These statistics and their variants are easily found in previous
image forensic studies such as (Kharrazi et al., 2004), (Tsai et al., 2006), (Gou et al.,
2009), (Khanna et al., 2009), (Filler et al., 2008), (Tsai et al., 2007), and (Tsai et al.,
2008). Usually, specific statistical features related to camera and/or scanner
pipelines, e.g., CFA (colour filter array) configuration (Kharrazi et al., 2004), (Tsai
et al., 2006), demosaicing algorithms (Gallagher and Chen, 2008), (Cao and Kot,
2009), colour processing/transformation, and the photo response non-uniformity
noise (PRNU) (Filler et al., 2008) are used along with steganalysis features.
Although there are many similarities in technique between steganalysis and source
camera/scanner identification, their difference is fundamental. For the former, we
can assume that a stego image has not been changed since the hidden message is
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embedded. Such an assumption is reasonable; otherwise the hidden message may not
be losslessly extracted). For the latter, however, this assumption is often not feasible.
In practice, we often have little knowledge about the image in question. A test image
may have undergone some image processing and thus becomes a processed one, or it
may remain unchanged since it is generated by cameras or scanners so that it keeps
an unprocessed one. Consequently, the statistical image features associated with the
purpose of forensic investigation should ideally remain unchanged or practically
change very little for a test image which has undergone some innocuous image
processing.

Since in general, existing camera/scanner identification methods are deemed quite
reliable in laboratory tests, one might be tempted to apply them in practice as well.
However, little is known about the robustness of forensic algorithms (Gloe et al.,
2007). In this work, we use a variant algorithm of (Kharrazi et al., 2004) and (Tsai et
al., 2006) as an example to investigate the robustness of camera classifiers as well as
the impact the reduced subset of features has on the robustness.

The rest of the paper is organized as follows. In Section 2, we construct our sample
camera classifier and evaluate its performance on ten different cameras. In Section 3,
we evaluate the performance of our classifier on images under three common image
manipulations. In Section 4, we first adopt a classical feature selection algorithm in
pattern recognition to search for a suboptimal subset of features, and then evaluate
the performance of the camera classifier on unprocessed and processed images,
respectively. We will conclude our work in Section 5.

2. A Sample Camera Classifier and its Performance
2.1. Construction of Feature Vector

In (Kharrazi et al., 2004), Kharrazi et al. proposed a prototype of camera classifier
based on the statistical image features derived from steganalysis as well as the
statistical features related to camera pipelines. That method was re-implemented by
Tsai and Wu on different camera models (Tsai et al., 2006). Their feature vector
consists of three types of image features: 9 wavelet features, 12 colour features and
12 image quality metrics (IQMs). The wavelet features consist of the mean of high-
frequency subband coefficients in each orientation and at one scale. The colour
features consist of the average value of each colour band, the correlation pair
between two different colour bands, the neighbour distribution centre of mass for
each colour band, and three energy ratios. The IQMs features are directly borrowed
from (Avcibas, 2001) and consist of three pixel difference-based features, i.c.,
Minkowski difference, the mean absolute error, and the mean square error; three
correlation-based features, i.e., the structural content, the normalized cross
correlation, and Czekonowski correlation; six spectral features, i.e., the spectral
magnitude error, the spectral phase error, the spectral phase-magnitude error, the
block spectral magnitude error, the block spectral phase error, and the block spectral
phase-magnitude error. The reader is referred to (Kharrazi et al., 2004), (Tsai et al.,
2006) and (Avcibas, 2001) for more detailed information about the IQMs.
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In this work, we propose a variant algorithm of (Kharrazi et al., 2004) and (Tsai et
al., 2006) as our sample camera classifier. We adopt all the 33 features in (Tsai et al.,
2006). Besides, we add the standard deviation (STD), skewness and kurtosis of high-
frequency subband coefficients in each orientation and at one scale in order to more
comprehensively reflect the characteristics of wavelet coefficients. As a result, we
have 3x3x4=36 wavelet features, which form our Feature Set I. The colour features
and IQMs listed in (Tsai et al., 2006) form our Feature Sets II and III, respectively.
By combining Feature Sets I, II and III, we generate a new feature vector of 60
dimensions, which is used as the input of our camera classifier. Like (Kharrazi et al.,
2004) and (Tsai et al., 2006), we adopt the LIBSVM toolbox (Chang and Lin, 2001)
with a nonlinear RBF (Radial Basis Function) kernel to build our camera classifier.

2.2. Performance of Our Sample Classifier on Unprocessed Images

Ten cameras employed in our test are five Canon cameras: A40, A620-1, A620-2,
A720, 450D; two Nikon cameras: L3-1, L3-2; two Sony cameras: DSC-T10, DSC-
W90; one Olympus camera: U820. For simplicity, we represent the above ten
cameras as X1, X2, X3, X4, X5, X6, X7, X8, X9, and X10 in sequence. To evaluate
the capability of these image features in identifying individual cameras, we
purposely use two Canon A620 cameras and two Nikon L3 cameras. Exactly, the
photos taken by X3 and X7 are not what we captured ourselves but downloaded from
the well-known free photo website: http://www.flickr.com/. Each camera takes 300
photos of natural scenes including buildings, trees, blue sky and clouds, streets and
people. All the photos are saved in JPEG format at the highest resolution each
camera can support. To facilitate fair comparison, we take a 1024x1024 test image
block from each photo. Based on the previous analysis (Li, 2010), each test image is
cut from the centre of a photo to avoid saturated image regions. This selection
strategy makes the test image better reflect the original image content. For each
camera, we randomly choose 150 images to form the training set while the rest 150
images form the test set. Experimental results are shown in the form of confusion
matrix, where the first column and the first row are the test camera index and the
predicted camera index, respectively. To prevent obscuring significant statistics, a
classification rate below 3% is simply denoted as* in the tables.
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XI[X2[X3[X4[X5][X6[X7[X8[x9][X10
X3 | * | * [87] 7| * | * | *|*]*]| *
X1 | s3] *[*[wis5] 7@ *|*]~*

Table 1: Confusion matrix for our sample classifier using all the three feature
sets. Accuracy = 91% (1370/1500)

From Table 1, our classifier achieves the average classification accuracy of 91%. It
demonstrates that our sample camera classifier is very effective in classifying
unprocessed images. As for X3 and X7, the correct rates are 87% and 63%,
respectively. We owe the decline in accuracy to different image content. As
mentioned before, the photos from X3 and X7 are downloaded from a free photo
website. So we are unable to know whether the photos have been altered or not. The
only thing we can observe is that the image content from X3 consists of artificial
products with various textile patterns and those images looks bright, while the image
content from X7 mainly consists of indoors scenes and those images looks dark. In
contrast, the content of our photos mainly consists of natural scenes with middle
intensity. Our detection results coincide with the observation that identification rate
is affected by image content (Tsai et al., 2007), (Li, 2010).

X1 | X2 | X3 |X4]|X5]X6|X7| X8| X9]| X10
X1 95 | * * * * * * * * *
X2 * 97 | * * * * * * * *
X3 * * 83 | 7 * * 7 * * *
X4 * * * 9] | * 6 * * * *
X5 * * * * 04 | * * * * *
X6 | * * * * * 95 | * * * *
X7 * * * * 5 3 87 | * * *
X8 * 3 * * * * * 97 | * *
X9 35 * * * * * * * 91 | *
X10 | * * * * * * 6 * * 93

Table 2: Confusion matrix for our sample classifier using Feature Set I.
Accuracy = 92% (1382/1500)
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Xl | X2 | X3|X4|X5]X6|X7|X8|X9]|X10
X1l |64 | * * * 6 8 * * 9 7
X2 |20 |40 |* * 13 19 * 3 5
X3 | * * 81 |3 * 7 * * * 3
X4 |7 17 | * 45 | 4 9 * 5 * 9
X5 |4 7 * 5 38 |17 | * 3 12 |19
X6 |15 |6 * 12 | 11 [ 43 | * 3 6 *
X7 |6 9 13 |7 7 * 43 | * 9 4
X8 |3 11 | * 7 24 |15 | * 29 | * 5
X9 |9 10 9 13 |13 | * 3 35 | *
X10 | * 5 * 9 4 12 | * 10 | 5 51

Table 3: Confusion matrix for our sample classifier using Feature Set I1.
Accuracy = 47% (702/1500)

We further investigate the performance of each individual feature set. Table 2
indicates that the average accuracy is 92% when only Feature Set I is used. So
wavelet features have better identification power than the combined effect of all the
three feature sets. In other words, even without Feature Sets II and III, this camera
classifier can still achieve satisfactory accuracy for these ten cameras. On the other
hand, Table 3 shows that the colour features lead to the average accuracy of 47%
while Table 4 shows that the IQMs have the average accuracy of 66%. Apparently,
both Feature Sets II and III are not as effective as Feature Set I. In terms of
computational complexity, these two feature sets are redundant in this case.

X1 [X2[X3[X4[X5][X6[X7]X8[X9]X10
XU [77 [7 [* [ [* = [ [* * |+
X4 |1 [13]6 [58[* [5 [* [* [+ [*

X6 5 * * 4 70 | * 10 | *
X7 | * 7 * 7 12 | * 52 |5

X8 | * 4 5 5 * 17 | 56 | 3

X9 | * 4 * * 6 11 [ 17 |13 |45 | *
X10 | * * * 4 3 * 11 ]9 * 69

Table 4: Confusion matrix for our sample classifier using Feature Set I1I.
Accuracy = 66% (987/1500)

3. Robustness of QOur Sample Classifier

Incidental image processing is usually not a malicious attack but a feasible way for
saving storage space or emphasizing image regions of interest. Camera identifiers
should have the capability in tackling images that have undergone invisible image
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manipulations. We evaluate the robustness of our classifier under three common
image manipulations: JPEG compression, image contrast stretching and image
sharpening. Each test image has undergone only one manipulation under each test.
We do not consider the combined effect of different manipulations to avoid making
our analysis biased. As will be seen, colour features, which have mediocre
performance for unprocessed/untouched images, outperform both wavelet features
and IQMs for processed images.

3.1. Experimental Results under Compression

We take JPEG compression using MATLAB with quality factor 70. The image
quality under that level is often acceptable for saving storage space. Table 5 indicates
that the average accuracy is 36%. Compared with Table 1, the performance of the
classifier greatly decreases. We further investigate the performance of each
individual feature set. From Feature Sets I to III, the corresponding correct
identification rates are 21%, 46% and 31%, respectively. Apparently, the
performance of every feature set degrades. Feature Set I has the sharpest decline in
performance. However, the behaviour of Feature Set II is a little surprising. It leads
to the average accuracy of 46%. Compared with the accuracy before compression
(47%), there is only a slight decline. This result implies that compression has a small
impact on Feature Set II. This is because the colour features do not have much
relation to the image details which the JPEG compression often discards. So we can
say that colour features are more robust than the wavelet features and the IQMs for
compressed images.

X1 | X2 [ X3 |X4|X5]|X6|X7|X8|X9|X10
X2 |68 |11 | * * * * 17 | * * *
X3 |41 |5 25 | * * 4 19 | * * *
X4 |30 | * * A 4 * 47 | * * 14
X6 |48 | * * * 3 13 |29 | * * 6
X7 15 | * * * 10 | * 72 | * * *
X8 |22 | * * * 39 | * 36 | * * *
X9 |29 | * * * 26 | 7 34 | * i *
X10 | 26 | * * * 3 * 7 * * 63

Table 5. Confusion matrix for our sample classifier using all the three feature
sets under compression. Accuracy = 36% (534/1500)
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X1 | X2 | X3 |X4]|X5]X6|X7]|X8|X9]|X10
X1 o4 | * 3 * * * * * * *
X2 10 |86 |3 * * * * * * *
X3 * * 88 | 7 * * * * * *
X4 * * * 97 | * * * * * *

X7 |5 |3 |7 |[* [ |4 [54a[* [+ |5

X0 [* [* [* [5 [* [* [4 [* [* |87

Table 6. Confusion matrix for our sample classifier using all the three feature
sets under contrast stretching. Accuracy = 87% (1305/1500)

3.2. Experimental Results under Contrast Stretching

Contrast stretching is a common image processing operation when people want to
emphasise image content within an interval of image grey levels. To simulate the
process of suppressing some grey-level pixels while emphasising others, we stretch
pixel values on each test image with the following contrast stretching function

0, 0<x<20
255
() =1535(=20), 20 < x <230 (1)
255, 230<x <255

According to Table 6, the average accuracy of the sample classifier is 87%. So the
average accuracy of our sample classifier only decreases by 4 percentage points
compared with Table 1. From Feature Sets I to III, the corresponding correct
identification rates are 90%, 42% and 46%, respectively. Feature Set I only has a
slight decline in performance compared with Table 2, but Feature III loses almost 20
percentage points in accuracy. Therefore, the wavelet features are quite robust
against contrast stretching while the IQMs do not behave well in this circumstance.
In essence, contrast stretching directly changes the shape of the histogram of pixel
values and it has little influence on the high frequency wavelet coefficients, so the
good performance of Feature Set I is understandable.
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XI[X2[X3 [X4[X5][X6[X7[X8[X9][X10
X7 |3 [* 65 [20[* |6 [4 [* [* [*
X8 |75 [* [us [x [x [x [*x ]9 [* [*

Table 7: Confusion matrix for our sample classifier using all the three feature
sets under sharpening. Accuracy = 12% (186/1500)

3.3. Experimental Results under Image Sharpening

Image sharpening is often used for enhancing object edges. In our simulation, a
weighted median filtering-based sharpening algorithm is used with the recommended
parameter (Bovik, 2006). Table 7 shows the average accuracy is 12%. Apparently,
image sharpening has the greatest impact on our sample classifier. From Feature Sets
I to III, the corresponding correct identification rates are 11%, 43% and 12%,
respectively. It means that using the wavelet features or the IQMs can hardly identify
cameras correctly. By contrast, the use of the colour features only loses 4 percentage
points in accuracy compared with Table 3. Therefore, the colour features are robust
against image sharpening. In fact, image sharpening often equally alters pixels on
red, blue and green bands, so the selected colour features are not very sensitive.

4. Dimensionality Reduction and its Impact on Robustness

Feature selection is one of the important problems in pattern recognition. There are
many reasons for reducing the number of features, for instance, computational
complexity. The problem in Feature Selection (FS) can be stated as the search for a
sufficiently reduced subset of, say, d features out of the total number of available
ones, D, without significantly degrading (or even improving in some cases) the
performance of the resulting classifier when using either set of features (Ferri et al.,
1994). Some FS algorithms have been introduced to optimize camera classifiers.
Tsai and Wang once used the SFFS (Sequential Floating Forward Selection)
algorithm (Pudil et al., 1994) as an adaptive feature selection tool to find a
suboptimal subset of features which was supposed to improve the classification
precision of their SVM-based camera classifier (Tsai et al., 2008). The top 20
important features were selected from 34 features employed in (Kharrazi et al.,
2004). In this work, we use the SFFS algorithm to select a subset from our 60
features, but our focus is to investigate the effect of this reduced subset on the
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robustness of the camera classifier. As will be seen, the SFFS algorithm is able to
find a suboptimal subset which enables our sample classifier to achieve almost the
same average identification accuracy as the original 60 features. However, the
selected feature subset has no way to guarantee the robustness. In fact, feature
selection algorithms such as SFFS aim at efficient pattern classification and the
criterion functions in SFFS are defined on the basis of classification accuracy.

4.1. SFFS and the Criterion Function

The Sequential Forward Selection (SFS) and its backward counterpart (SBS) are
suboptimal methods. Both of them suffer from the so-called “nesting effect”.
Attempts to prevent the nesting of feature subsets led to the development of the plus /
- take away » method. The plus / - take away » method or called (/, ) method,
consists of applying SFS during / steps followed by r steps of SBS with the cycle of
forward and backward selection until the required number of features is reached.
However, it is not easy to find the best parameters / and ». The improved version of
({, ¥) method is the SFFS algorithm, which consists of applying after each forward
step a number of backward steps as long as the corresponding subsets are better than
the previously evaluated ones at that level (Ferri et al., 1994).

The criterion function determines which feature should be included in and which
should be excluded from the subset in the SFFS. Two popular class separability
criteria are divergence and scatter matrices. Computation of divergence is not easy
for non-Gaussian distribution. Hence, this work uses the criterion function defined
on the basis of scatter matrices. Suppose Sy, S, and S, are Within-class scatter
matrix, Between-class scatter matrix and Total mixture matrix, respectively. Our
criterion function is defined as J=| S,|/| Sy|, where |.| represents determinant. The
reader is referred to (Theodoridis, 2006) for more information about its calculation.

4.2. Performance of the Reduced Feature Subset

After performing the SFFS, 26 features are selected from the original 60 ones to
form our new feature vector. They are 15 wavelet features (i.e., 7 coefficient
averages, 5 STD, 2 skewness values and 1 kurtosis value), 6 colour features (i.e., 2
average values, 2 correlation pairs and 2 energy ratios) and 5 IQMs (i.e., 3 pixel
difference-based features and 2 spectral features).

We use these 26 features to repeat our experiments in Subsection 2.2 and Section 3.
For unprocessed images, the camera classifier has the average classification accuracy
of 90%. Compared with Table 1, the reduced subset achieves very close
identification accuracy as the original 60 features. Next we evaluate its performance
under three image manipulations. For compressed images, the reduced subset leads
to the average accuracy of 29%. Compared with Table 5, it loses 7 percentage points
in accuracy. For contrast stretched images, the average accuracy is 86%. Compared
with Table 6, it loses only 1 percentage point in accuracy. As for image sharpening,
these 26 features have the same identification power (i.e., 12%) as the original 60
features. From the above experiments, we can observe that the performance of these
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26 features is very close to that of the original 60 features when test images are not
subject to image processing; for processed images; however, the reduced subset may
cause the classifier to lose robustness to some extent.

5. Conclusions

Image feature selection is an important issue for feature-based camera classifiers.
Although different statistical image features have been proposed for camera
identification, their robustness has not been thoroughly discussed; moreover, the
robustness of the reduced subset of features has seldom been discussed. In this work,
we have used a variant of a classical camera classifier as an example to investigate
these two aspects. Our experiments have revealed that different statistical image
features have different robustness against image manipulations and the reduced
subset of features usually does not have the same robustness as the original feature
vector. Our work also indicates that the selection of an accurate, efficient and robust
reduced subset of image features is a difficult issue since we can not predict which
features will be selected by common SF algorithms. This topic is significant for the
design of practical camera classifiers and needs further study.

6. Acknowledgement

This work is partially supported by the EU FP7 Digital Image and Video Forensics
project (Grant Agreement No. 251677, Acronym: DIVeFor) and NSF of China
60772115.

7. References

Avcibas, 1. (2001), Image Quality Statistics and their Use in Steganalysis and Compression.
Ph.D. Thesis, Bogazici University, Turkey, 2001.

Avcibas, 1., Memon, N. and Sankur, B. (2003), “Steganalysis Using Image Quality Metrics”,
IEEE Transaction on Image Processing, Volume 12, Number 2, January 2003, pp. 221-229.

Bovik, A.C. (2006), Handbook of Image and Video Processing (Communications, Networking
and Multimedia). Academic Press, Orlando, FL. 2006.

Chang C.-C. and Lin, C.-J. (2001), LIBSVM: A Library for Support Vector Machines 2001.
http://www.csie.ntu.edu.tw/cjlin/libsvm

Cao H. and Kot, A.C. (2009), “Accurate Detection of Demosaicing Regularity for Digital
Image Forensics”, IEEE Transactions on Information Forensics and Security, Volume 4,
Number 4, December 2009, pp. 899-910.

Farid, H. and Lyu, S. (2002), “Detecting Hidden Messages Using Higher-Order Statistics and
Support Vector Machines”, Proceedings of 5th International Workshop on Information
Hiding, Springer-Verlag, Berlin, Heidelberg, Volume 2578, 2002, pp. 340-354.

Ferri, F.J., Pudil, P., Hatef, M. and Kittler, J. (1994), “Comparative Study of Techniques for
Large-Scale Feature Selection”, Pattern Recognition in Practice IV. Elsevier, Amsterdam,
1994, pp. 403-413.

158



Proceedings of the Sixth International
Workshop on Digital Forensics & Incident Analysis (WDFIA 2011)

Filler, T., Fridrich, J. and Goljan, M. (2008), “Using Sensor Pattern Noise for Camera Model
Identification”, Proceedings of IEEE International Conference on Image Processing, 2008,
pp. 1296-1299.

Gallagher A. and Chen, T. (2008), “Image Authentication by Detecting Traces of
Demosaicing”, Proceedings of IEEE International Conference on Computer Vision and
Pattern Recognition, Alaska, US, 2008, pp. 1-8.

Gloe, T., Kirchner, M., Winkler, P. and Bohme, R. (2007), “Can We Trust Digital Image
Forensics”, Proceedings of the 15th ACM International Conference on Multimedia, September
23-28, 2007, pp.78-86.

Gou, H., Swaminathan, A. and Wu, M. (2009), “Intrinsic Sensor Noise Features for Forensic
Analysis on Scanners and Scanned Images”, I[EEE Transactions on Information Forensics and
Security, Volume 4, Number 3, September 2009, pp. 476-491.

Kharrazi, M., Sencar, H.T. and Memon, N. (2004), “Blind Source Camera Identification”,
Proceedings of IEEE International Conference on Image Processing, Singapore, October 24-
27,2004, pp. 709-712.

Khanna, N., Mikkilineni, A.K. and Delp, E.J. (2009), “Scanner Identification Using Feature-
based Processing and Analysis”, IEEE Transactions on Information Forensics and Security,
Volume 4, Number 1, March 2009, pp. 123-139.

Li, C.-T. (2010), “Source Camera Identification Using Enhanced Sensor Pattern Noise”, IEEE
Transactions on Information Forensics and Security, Volume 5, Number 2, June 2010, pp.
280-287.

Pudil, P., Novovicova, J. and Kittler, J. (1994), “Floating Search Methods in Feature
Selection”, Pattern Recognition Letters, Volume 15, Number 11, 1994, pp. 1119-1125.

Tsai, M.-J. and Wu, G.-H. (2006), “Using Image Features to Identify Camera Sources”,
Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing,
Volume 2, 2006.

Tsai, M.-J., Lai, C.-L. and Liu, J. (2007), “Camera/Mobile Phone Source Identification for
Digital Forensics”, Proceedings of IEEE International Conference on Acoustics, Speech and
Signal Processing, 2007, pp. 221-224.

Tsai M.-J. and Wang, C.-S (2008), “Adaptive Feature Selection for Digital Camera Source
Identification”, Proceedings of IEEE International Symposium on Circuits and Systems, May
2008.

Theodoridis S. and Koutroumbas, K. (2006), Pattern Recognition (Third Edition). Academic
Press, London, 2006.

159





