
A Framework for OpenFlow-like Policy-based
Routing in Hybrid Software Defined Networks

Anshuman Mishra∗, Deven Bansod†, K Haribabu‡
∗Dept. of Electrical and Electronics Engineering

†‡Dept. of Computer Science and Information Systems

Birla Institute of Technology and Science, Pilani, India

{f2012074∗, f2012316†, khari‡}@pilani.bits-pilani.ac.in

Abstract—Software Defined Networks (SDNs) provide a cen-
tralized view and allow extensive programmability of the network.
They separate the control and data planes opening up immense
scope in developing low cost control and management applica-
tions to operate the network. Yet, network administrators are
ambivalent to revamp their entire network hardware to bring in
SDN-compatible switches. This leads to the need for developing
models for gradual adaptation of SDN technology. In this paper,
we present a framework which allows for policy implementations
based on all OpenFlow version 1.4 specified match fields, over
legacy Layer 3 devices. This would enable the legacy networks
to reap the benefits of SDN in an incremental, controlled and
consistent manner.

Keywords—Software Defined Networks, Hybrid SDN, Policy
Framework, Legacy Devices, OpenFlow

I. INTRODUCTION

Software Defined Networks (SDNs) extend a centralized
control of the entire network to the network administrator. This
enables easy configuration of network policies and security
measures in order to manage the traffic in the network. Im-
proved visibility of the network leads to a substantial reduction
in operational costs and allows for rapid and more dynamic
provisioning of resources. It also offers faster recovery from
link failures and makes traffic engineering much simpler.
Separation of the control and data planes provides an ab-
straction, opening up possibilities for development of control
applications to manage the network.

Despite the manifest benefits that SDN has to offer, net-
work administrators are ambivalent towards upgrading their en-
tire network architecture to incorporate SDN-enabled devices.
The transition to SDN requires investment in new hardware
along with remodeling of organisational structure to adapt to
a new form of network management and application develop-
ment. These impediments are the reason that the adaptation of
SDN technology is meagre at best.

The need of the hour is a model which could provide SDN-
like control over the network, without the need to completely
revamp the entire network hardware. Vissicchio, et al. [1]
have identified the research challenges and opportunities in
such hybrid networks. They illustrate how SDN promises to
simplify the design, operation and control of networks. At the
same time they elucidate various challenges involved, such as
incremental deployment, robustness and scalability that hinder
full scale deployment of SDN.

In this paper, we present a framework which enables man-
agement of network traffic through the addition of some SDN-
enabled switches alongside the existing legacy devices. The
model provides an interface to implement SDN-like policies
based on the OpenFlow [2] version 1.4 supported match fields,
over the legacy devices. Each subnet within the network is
required to be connected to at least one SDN compatible
switch which in turn links it to the legacy Layer 3 network,
though multiple subnets can connect to a single SDN-enabled
switch.The SDN switch provides a gateway to monitor, control
and modify the packets flowing in and out of the directly-
connected subnet(s).

Even in very large networks with IP ranges analogous to
class A (before CIDR), a vast pool of IP addresses remains
unused from the perspective of the network (see Table I). Our
idea aims to exploit this abundance of unused IP addresses
available in the network in order to implement SDN-like
policies without the need to fully upgrade the network to
support SDN.

The paper is divided into the following sections: Section
II reviews some existing literature relevant to the deployment
of SDN and hybrid SDN networks. Section III presents the
design of our model and outlines the algorithms used in
the controller modules. Section IV describes the experimental
setup and some policy implementation examples using the
model. Section V concludes the discussion and explores the
scope for future work.

II. RELATED WORK

Several efforts have been made to facilitate the transi-
tion from legacy networks to pure SDN networks. Lu et al.
proposed HybNet [3] as an abstraction layer on top of a
centralized controller and non-SDN switches so that it can
coordinate the communication between them. Panopticon [4]
provides a software solution to determine the optimal locations
for adding SDN compatible devices to achieve a network
wide control in hybrid networks. ClosedFlow [5] utilizes the
functionalities of proprietary devices to implement OpenFlow-
like control using routers which support features like Access
Control Lists (ACLs) and route-maps. The implementation
is limited to devices which support the given functionalities.
Further, it focuses only on emulating the basic required aspects
of OpenFlow and does not provide for policy implementation
based on all OpenFlow supported fields. A layer-2 solution

Proceedings of the Eleventh International Network Conference (INC 2016)

97

Telekinesis was developed by Jin, et al. [6] but it failed to
provide a generalisation for a similar implementation over
layer 3. In this paper, we present a framework which allows
for network wide SDN-like control over Layer 3 devices
and supporting policies based on all OpenFlow version 1.4
specified match fields.

III. DESIGN

Deriving inspiration from the prior work done in this field,
we propose an interface through which SDN-like control can
be exercised in a hybrid SDN network. It supports policy
implementations of various forms, providing extensive control
and programmability of the network. The framework also
allows for traffic engineering applications to work over it with
a degree of delay incurred in updating the routing and flow
tables.

Majority of routing protocols in legacy networks are con-
strained to work based on matching destination IP prefixes
only. This leaves the network administrators with little flexi-
bility to modulate network traffic based on any other criterion.
To resolve this constraint, we make use of limited number
of SDN compatible switches to match policy requirements.
These policies are mapped onto a new set of destination IP
addresses chosen from the pool of unused (free) IP addresses
[See Table I for number of Free IPs available]. Simultaneously,
static routes are installed in the legacy L3 devices along the
path taken by the packets matching the policy using a custom
driver script. The rest of the routing happens through the legacy
network, which is able to route the traffic based on this new
destination IP address. Finally, before reaching the destination
subnet, another SDN switch maps the destination IP back to the
original destination IP address of the packet. The flow entries
for mapping (in the SDN switch at the source subnet) and
reverse mapping (in the SDN switch at the destination subnet)
are installed at the same time.

A. Model

We model the mapping of destination IPs onto the range
of free/unused IPs in terms of the limiting factors that these
mappings would bring in. A policy path is defined as the path
which a packet would follow if it matches a certain policy.
This path would be a collection of legacy routers and two SDN
switches. It would start at the SDN switch directly connected to
the source subnet and end at the SDN switch directly connected
to the destination subnet.

Assumptions:
A.1 Topology requirements : Every subnet is connected to

router(s) / L3 devices through at least 1 SDN switch.

A.2 Hybrid network before the introduction of any custom
policy is functioning correctly.

A.3 The controller is aware of the details of the entire
network topology.

N∑
k=1

pk = Ptotal (1)

∀k ∈ S,Hk
src + Ek

non−map +

pk∑
i=1

Hi
dest ≤ Fmax (2)

TABLE I: Statistics of reserved and available IPs

Statistics of reserved and available IPs
Reserved Block address Address Count Reference
10.0.0.0/8 16,777,216 RFC 1918 [7]

100.64.0.0/10 4,194,304 RFC 6598 [8]

127.0.0.0/8 16,777,216 RFC 990 [9]

169.254.0.0/16 65,536 RFC 3927 [10]

172.16.0.0/12 1,048,576 RFC 1918 [7]

192.0.0.0/24 256 RFC 5736 [11]

192.0.2.0/24 256 RFC 5737 [12]

192.88.99.0/24 256 RFC 3068 [13]

192.168.0.0/16 65,536 RFC 1918 [7]

198.18.0.0/15 131,072 RFC 2544 [14]

198.51.100.0/24 256 RFC 5737 [12]

203.0.113.0/24 256 RFC 5737 [12]

224.0.0.0/40 268,435,456 RFC 5771 [15]

240.0.0.0/4 268,435,455 RFC 6890 [16]

255.255.255.255/32 1 RFC 6890 [16]

Total Reserved 592,708,864 –

Class A 16,777,216 –

Total Unavailable 609,486,070 –

Available for Re-map use 3,685,481,226 Free IPs

∀j ∈ L,Rj
def +Rj

IP−clashes + pj ≤ Tmax (3)

M∑
k=1

Hk
dst ≤ Umax (4)

where

– pk - Number of policies at source SDN switch k

– Ptotal - Total number of Policies in the network from
any source to any destination

– N- Number of new SDN switches, synonymous to
number of subnets in the network as per the assump-
tion A.1

– S - Set of SDN switches (refer to assumption A.1)

– Hsrc
k - Number of IPs in the subnet directly connected

to the kth SDN switch

– Enon-map
k - Number of flow entries not used for IP

mapping in the kth SDN switch

– Hdest
i - Number of IPs in the destination subnet of the

ith policy

– Fmax - Maximal number of flow-entry tuples that can
be added in an SDN switch

– L - Set of legacy routers/L3 devices in the core of the
network, where we want to implement the policies

– Rdef
j - Number of routes present in the routing table

of the jth router/ L3 device for legacy functioning of
the network

– RIP-clashes
j - Number of routes present in the routing

table of the jth router/ L3 device for mappings that
handle IP clashes

– pj - Number of policy paths through jthlegacy router

– Tmax - Maximal number of IPv4 routes that can be
added in a router in L

– M - Total number of unique paths in the network from
any source to any destination

– Hdst
k - Number of IPs in the destination subnet of the

kth path

Proceedings of the Eleventh International Network Conference (INC 2016)

98

– Umax - Maximum count of Free/unused IPs available
in the network

Equation 1 adds up the number of policies implemented on
each subnet as source to get the total number of policies
currently implemented in the entire network.

Equation 2 deals with the limits on size of flow tables in
the SDN switches. It involves Hsrc

k which is the number of
entries required for reverse mapping the changed destination
IP to the host IP at the destination SDN switch, Enon-map

k and
the summation of number of IP addresses in all the destination
subnets for which unique policy paths have been defined from
source Sk. The sum of these terms constitutes the total number
of flows required in the SDN switches for the implementation
of the policies and thus, should be less than the flow table size
Fmax. This sets a limit on the maximum number of policies
which can be implemented concurrently in the network.

Similarly, Equation 3 deals with limits imposed due to the
size of routing tables in the L3 devices. It states that for every
legacy router/L3 switch in the network, the sum of normal
routes, routes required to resolve for Internet IP clash (refer
to Section III-C) and number of policy paths passing through
any given router should be less than its supported routing table
size Tmax.

Equation 4 suggests that the total IPs used for mapping,
summed over all the policies implemented should be always
less than the total available IPs (Umax).

As per the free IP address statistics presented in Table
I, it is clear that even for Class A networks, the number of
free IP addresses available would easily exceed the number of
IP addresses required for the mapping process in a practical
scenario. Moreover, the routing table size (Tmax) is generally
around 500K - 1M for a standard Cisco router [17]. Thus, even
under an assumption that the legacy routes already occupy 50%
of the routing tables, the size of routing tables would not pose
much of a limit on the number of paths through a given router
(pj).

The number of different policy paths that an administrator can
specify from a source subnet would realistically be limited only
by the size of the flow table in the SDN switches. The general
size of flow table is assumed to be dependent on the switch.
The widely used Open vSwitch [18] supports about 500K - 1M
flow entries while NoviFlow 2122 [19](an OpenFlow enabled
hardware switch) supports around 125K-1M.

The equations only present constraints imposed on the total
number of policies which can be concurrently implemented
through the proposed framework. The terms can be viewed
in a generic quantitative manner and evaluating exact values
for the terms is not necessary for the implementation of the
framework.

B. Controller Modules

For the implementation of the model on a network, the
controller runs a few modules:

• IP Range Allocator :- This module manages the
available IP pool, deciding which IP ranges should
be allocated in order to minimize the number of IP

clashes. It makes use of the network statistics from
the NetStats Aggregator (discussed later) for optimal
allocation.

• Policy Translator :- This module performs the actual
mapping of a new policy to a corresponding range of
IP addresses. It first verifies if the requested policy
path is consistent, has all links in up state and does
not contain a loop. The IP range allocated is directly
mapped onto the destination subnet in order to reduce
the number of flows required at the destination SDN
switch.

• Twin-flow pusher :- After the mapping is done, this
module installs flows in SDN switches at the source
(for mapping) as well as the destination subnet (for
reverse mapping). Along with modification of the
destination IP address, the module also modifies the
destination MAC address to that of the first router/L3
device in the policy path (similar to when a host sends
a packet to its default gateway).

• Legacy Route Modulator :- The legacy devices in the
network would not be aware of routing details for the
new mapped IPs. This module generates static routes
and installs them into the routers on the desired policy
path to be implemented. The routes are configured
by remote access using Telnet [20] or SSH [21]. The
process can be automated using custom drivers.

• NetStats Aggregator :- This module periodically
polls the SDN switches to get the number of matches
for flows. It provides statistics to analyse patterns in
the network traffic.

Algorithm 1 Twin Flow Pusher algorithm

procedure TWINFLOWPUSHER (Ssrc, Sdest, MatchCondi-
tions)

In SDN switch connected to subnet dst,
add entries to map IPs of map to dst.

In SDN switch connected to subnet src,
add entries to map IPs of dst to map,
with appropriate MatchConditions.

return;
end procedure

Algorithm 2 Legacy route Modulator

procedure LEGACYROUTERMODULATOR (P, M)
Prev = reverse of P
for each router R ∈ P rev do

install static routes
to match the prefix of subnet M,
add entries to map IPs of dst to map,
and appropriate next hop to next router in Prev.

end for

return;
end procedure

Proceedings of the Eleventh International Network Conference (INC 2016)

99

Fig. 1: Example Topology

Algorithm 3 Policy Translator algorithm

procedure POLICYTRANSLATOR (U, D, Src, Dst, Match-
Conditions, P)

Divide the List of free IPs U
into subnets (based on size of Dst subnet)
which can be used to map policies to.

Sort these subnets in descending order
based on usage statistics data D.

Choose the subnet which has
shown lowest Internet IP traffic.

Remove this subnet from list U.
Call this subnet as M.

call LegacyRouterModulator(P, M);
call TwinPushFlow(M, Src, Dst, MatchConditions);

return;
end procedure

The inter-relation of the controller modules is explained in
the following section.

C. IP Mapping

Whenever a new policy is to be installed in the network,
a set of IP addresses from the unused IP address pool is
needed to map the policy onto. The policy would be stated
as certain match conditions which when satisfied would route
the packet through a specified policy path P. The Policy
Translator module in the controller carries out this function
of creating a one-to-one mapping of an IP range onto the
destination subnet of the policy. For a destination subnet such
as xxx.xxx.xxx.0/24, the module would pick up an IP address
range of the form xxx.xxx.xxx.0/24 from the free IP pool and
directly map the entries. This direct mapping enables us to
reduce the number of flow entries required for reverse-mapping
at the destination SDN switch. The controller would add a

simple flow at the destination SDN switch, which matches the
destination IP based on a wildcard of the form 0.0.0.255 and
the ingress port and then resets the destination IP accordingly.
This reduces the number of flows required for all reverse
mappings to the order of number of hosts in the destination
subnet.

The Policy Translator module calls the Legacy Route
Modulator module before the Twin Flow Pusher module in
order to retain consistency of routes in the network. The routes
are added in reverse order on the path so that the source
SDN switch where the destination IP is mapped, is updated
at the end. Thus, the policies are implemented through a
transactional interface in an all-or-nothing manner based on a
principle similar to the controller implementation in Software
Transactional Networking (STN) by Canini, et al. [22]. If any
inconsistencies are encountered while setting up routes for a
policy, all the changes made would be rolled back.

Each IP mapping will also require static routes to be added
into the legacy routers on policy path P so that the legacy
network is able to route the new IP range as desired. The Policy
Translator would reuse IP addresses in order to map different
policies which use the same policy path. This optimizes the
number of static routes required in the legacy routers.

The controller can be configured to listen to SNMP traps
sent out from the routers in the network in order to learn about
any failures in the network. In such an event, the controller
can simply perform a complete roll back by removing all the
entries in the SDN switches and the legacy devices.

D. Internet IP Address Clash

The inherent problem with mapping IPs is that even these
free IP addresses could possibly be associated with some host
outside the entire network (For ex. a Web Server outside
the network). Now, if traffic needs to be sent to such an IP
address, we might end up with a clash. Our network might
be configured to map a certain policy onto this IP address
while unaware that this packet (intended for an external host)
is not to be considered under the policy. The legacy network
would thus end up routing the packet based on static routes

Proceedings of the Eleventh International Network Conference (INC 2016)

100

configured as per the policy and thus would route the packet
incorrectly.

A proposed solution is to dynamically map these IPs. A
packet intended to be sent outside of the network can be easily
identified at the source SDN switch. A simple flow would be
installed to send such packets to the controller. These flows
would be installed at the same time when the flows for the
conflicting policy would be installed in the SDN switch. Once
the controller receives such packets, it creates a temporary map
onto IP addresses from the free IP pool. Flows and static routes
are added and the traffic is then routed based on this temporary
mapping. Unlike policy mappings, these mappings would have
an associated time to live and would be flushed if not matched
for a certain time. The flushed IPs are then returned to the free
IP pool.

The IP range allocator/reallocator module in the controller
would analyse the traffic and optimize the allocation of IP
ranges in order to avoid such IP clashes. The time-to-live of
the temporary mappings can also be modulated in order to
achieve a balance between delay in transmission and excessive
use of IPs from the free IP pool for such temporary maps.

IV. EXPERIMENTAL SETUP AND EXAMPLES

We deploy a custom topology in mininet [23] using 6 hosts
(divided as 2 subnets), 4 legacy routers R3, R4, R7 and R8.
According to assumption A.1, both the subnets have a SDN
switch on the path to their individual gateway router. (See
Figure 1)

Components of the topology:

• Hosts - h1 to h6

– Subnet 1 - h1 to h3 (100.0.1.0/24)
– Subnet 2 - h4 to h6 (100.0.2.0/24)

• Legacy L2 switches - s1 and s2

• Legacy L3 switches/ routers - r3, r4, r7 and r8

• SDN-enabled switches - s5 and s6

• Controller C1 (not depicted in Figure 1) is connected
out-of-band to s5 and s6

Policy Implementations:

Example 1:

All traffic with source as subnet 1, destination as subnet 2 and
destination TCP port as 23 (Telnet) should follow a path P1 as
s5 → r3 → r8 → s6 before reaching intended host on subnet 2

Flow entries in S5 (for mapping):

• priority=10, ip,
nw_src=100.0.1.0/24,
nw_dst=100.0.2.5, tcp_dst=23
actions = mod_dl_dst=00:00:00:00:13:01,
mod_nw_dst=1.0.0.5, output:1

• priority=10, ip,
nw_src=100.0.1.0/24,
nw_dst=100.0.2.6, tcp_dst=23
actions = mod_dl_dst=00:00:00:00:13:01,
mod_nw_dst=1.0.0.6, output:1

• priority=10, ip,
nw_src=100.0.1.0/24,

nw_dst=100.0.2.7, tcp_dst=23
actions = mod_dl_dst=00:00:00:00:13:01,
mod_nw_dst=1.0.0.7, output:1

• priority=11, ip,
nw_src=100.0.1.0/24,
nw_dst=1.0.0.0/24,
actions=send_to_controller

Flow entries in S6 (for reverse mapping):

• priority=10, nw_dst=0.0.0.5/0.0.0.255,
in_port=2 actions =
mod_dl_dst=00:00:00:00:00:04,
mod_nw_dst=100.0.2.5, output:1

• priority=10, nw_dst=0.0.0.6/0.0.0.255,
in_port=2 actions =
mod_dl_dst=00:00:00:00:00:05,
mod_nw_dst=100.0.2.6, output:1

• priority=10, nw_dst=0.0.0.7/0.0.0.255,
in_port=2 actions =
mod_dl_dst=00:00:00:00:00:06,
mod_nw_dst=100.0.2.7, output:1

Static routes in R3:

• match 1.0.0.0/24 via 100.0.6.100 dev r3-eth2

Static routes in R8:

• match 1.0.0.0/24 via 100.0.5.50 dev r8-eth3

Example 2:

Now, if later on, administrator decides to have all TCP port
20 (FTP) traffic to follow a path P3 as s5 → r3 → r8 → s6
before reaching intended host on subnet 2.

The controller checks if this exact path is already being
mapped to some IPs and finds that we are already mapping
the exact same path for some other policy (Example 1), so
decides not to map this policy to newer ranges but rather uses
the same IP mapping without any changes required to the static
routes in legacy L3 devices/routers on the way and just installs
the flow-entries to map to same IPs.

Flow entries in S5 (for mapping):
• priority=10, ip,

nw_src=100.0.1.0/24,
nw_dst=100.0.2.5, tcp_dst=23
actions= mod_dl_dst=00:00:00:00:13:01,
mod_nw_dst=1.0.0.5, output:1

• priority=10, ip,
nw_src=100.0.1.0/24,
nw_dst=100.0.2.6, tcp_dst=23,
actions= mod_dl_dst=00:00:00:00:13:01,
mod_nw_dst=1.0.0.6, output:1

• priority=10, ip,
nw_src=100.0.1.0/24,
nw_dst=100.0.2.7, tcp_dst=23
actions= mod_dl_dst=00:00:00:00:13:01,
mod_nw_dst=1.0.0.7, output:1

The reverse mapping entries in S6 would not be required as
we have already installed the reverse mapping entries while
setting up the policy in Example 1.

Proceedings of the Eleventh International Network Conference (INC 2016)

101

V. CONCLUSION AND FUTURE WORK

In this paper, we introduced a framework for the network
administrators to implement network policies, by mapping
those policies to the IP addresses which are unused inside the
network. The test runs in Section IV show that we are able to
implement policy-based routing in legacy routers supporting
all other OpenFlow version 1.4 match fields (a total of 41), in
addition to the destination IP address.

Through the tests, we have shown the examples of policies
implemented through our model, though there is a need to
study the impact of these mappings and reverse-mappings and
interaction of controller with the legacy routers on a large
network in terms of latencies introduced due to the increase
in control traffic, delays due to the Internet IP clash problem
and so on.

As pointed in Section III-D, the mapped IP might clash
with an actual IP address in the Internet. Though we have
suggested a way to handle these clashes to provide a con-
sistency in the network, this workaround introduces its own
delays. There is scope to find a way to optimize the allocation
of IP addresses for mapping in order to minimize the number
of clashes.

Currently, a major constraint in the IP allocation procedure
is that every policy requires us to add as many flow entries in
the SDN switch as there are hosts in its directly connected
subnet. There is scope to implement filtering methods on the
policies in order to remove redundancies within them.

Though the maximum number of policies that can be
implemented in the network is realistically limited only by the
flow-table size in SDN switches, use of IPv6 address space
(only if the network hardware has support for IPv6) instead
of IPv4 address space, would provide for a larger free IP pool
availability and the idea can be explored in the future.

REFERENCES

[1] S. Vissicchio, L. Vanbever, and O. Bonaventure, “Oppor-
tunities and research challenges of hybrid software defined
networks,” vol. 44, no. 2, pp. 70–75. [Online]. Available:
http://doi.acm.org/10.1145/2602204.2602216

[2] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: Enabling
innovation in campus networks,” SIGCOMM Comput. Commun.
Rev., vol. 38, no. 2, pp. 69–74, Mar. 2008. [Online]. Available:
http://doi.acm.org/10.1145/1355734.1355746

[3] H. Lu, N. Arora, H. Zhang, C. Lumezanu, J. Rhee, and G. Jiang,
“Hybnet: Network manager for a hybrid network infrastructure,” in
Proceedings of the Industrial Track of the 13th ACM/IFIP/USENIX
International Middleware Conference. ACM, p. 6. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2541602

[4] D. Levin, M. Canini, S. Schmid, F. Schaffert, A. Feldmann,
and others, “Panopticon: Reaping the benefits of incremental sdn
deployment in enterprise networks,” in USENIX ATC. [Online].
Available: https://www.usenix.org/system/files/conference/atc14/atc14-
paper-levin.pdf

[5] R. Hand and E. Keller, “ClosedFlow: openflow-like control over
proprietary devices.” ACM Press, pp. 7–12. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2620728.2620738

[6] C. Jin, C. Lumezanu, Q. Xu, Z.-L. Zhang, and G. Jiang,
“Telekinesis: controlling legacy switch routing with OpenFlow in
hybrid networks.” ACM Press, pp. 1–7. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2774993.2775013

[7] Y. Rekhter, R. G. Moskowitz, D. Karrenberg, G. J. de Groot,
and E. Lear, “Address allocation for private internets,” Internet
Requests for Comments, RFC Editor, BCP 5, February
1996, http://www.rfc-editor.org/rfc/rfc1918.txt. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc1918.txt

[8] J. Weil, V. Kuarsingh, C. Donley, C. Liljenstolpe, and
M. Azinger, “Iana-reserved ipv4 prefix for shared address space,”
Internet Requests for Comments, RFC Editor, BCP 153, April
2012, http://www.rfc-editor.org/rfc/rfc6598.txt. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc6598.txt

[9] J. Reynolds and J. Postel, “Assigned numbers,” Internet Requests for
Comments, RFC Editor, RFC 990, November 1986.

[10] S. Cheshire, B. Aboba, and E. Guttman, “Dynamic configuration of ipv4
link-local addresses,” Internet Requests for Comments, RFC Editor,
RFC 3927, May 2005.

[11] G. Huston, M. Cotton, and L. Vegoda, “Iana ipv4 special purpose
address registry,” Internet Requests for Comments, RFC Editor, RFC
5736, January 2010.

[12] J. Arkko, M. Cotton, and L. Vegoda, “Ipv4 address blocks reserved for
documentation,” Internet Requests for Comments, RFC Editor, RFC
5737, January 2010.

[13] C. Huitema, “An anycast prefix for 6to4 relay routers,” Internet Requests
for Comments, RFC Editor, RFC 3068, June 2001.

[14] S. Bradner and J. McQuaid, “Benchmarking methodology for network
interconnect devices,” Internet Requests for Comments, RFC Editor,
RFC 2544, March 1999, http://www.rfc-editor.org/rfc/rfc2544.txt.
[Online]. Available: http://www.rfc-editor.org/rfc/rfc2544.txt

[15] M. Cotton, L. Vegoda, and D. Meyer, “Iana guidelines for ipv4 multicast
address assignments,” Internet Requests for Comments, RFC Editor,
BCP 51, March 2010.

[16] M. Cotton, L. Vegoda, R. Bonica, and B. Haberman, “Special-
purpose ip address registries,” Internet Requests for Comments, RFC
Editor, BCP 153, April 2013, http://www.rfc-editor.org/rfc/rfc6890.txt.
[Online]. Available: http://www.rfc-editor.org/rfc/rfc6890.txt

[17] “CAT 6500 and 7600 Series Routers and Switches,”
http://www.cisco.com/c/en/us/support/docs/switches/catalyst-6500-
series-switches/117712-problemsolution-cat6500-00.html/.

[18] “Open vSwitch,” http://openvswitch.org/.

[19] “NoviSwitch,” http://noviflow.com/products/noviswitch/.

[20] J. Postel and J. Reynolds, “Telnet protocol specification,”
Internet Requests for Comments, RFC Editor, STD 8, May
1983, http://www.rfc-editor.org/rfc/rfc854.txt. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc854.txt

[21] T. Ylonen and C. Lonvick, “The secure shell (ssh) protocol
architecture,” Internet Requests for Comments, RFC Editor, RFC
4251, January 2006, http://www.rfc-editor.org/rfc/rfc4251.txt. [Online].
Available: http://www.rfc-editor.org/rfc/rfc4251.txt

[22] M. Canini, D. De Cicco, P. Kuznetsov, D. Levin, S. Schmid, S. Vissic-
chio, and others, “STN: A robust and distributed SDN control plane.”
[Online]. Available: https://www.usenix.org/sites/default/files/ons2014-
poster-canini.pdf

[23] “Mininet,” http://mininet.org/.

Proceedings of the Eleventh International Network Conference (INC 2016)

102

