
Proceedings of the Tenth International Symposium on
Human Aspects of Information Security & Assurance (HAISA 2016)

252

Towards the Usability Evaluation of Security APIs

P.L. Gorski and L.L. Iacono

Cologne University of Applied Sciences, Germany
e-mail: {peter.gorski, luigi.lo_iacono}@th-koeln.de

Abstract

Application Programming Interfaces (APIs) are a vital link between software components as
well as between software and developers. Security APIs deliver crucial functionalities for
programmers who see themselves in the increasing need for integrating security services into
their software products. The ignorant or incorrect use of Security APIs leads to critical security
flaws, as has been revealed by recent security studies. One major reason for this is rooted in
usability issues. API Usability research has been deriving recommendations for designing
usable APIs in general. Facing the growing relevance of Security APIs, the question arises,
whether the observed usability aspects in the general space are already sufficient enough for
building usable Security APIs. The currently available findings in the API Usability domain
are selective fragments only, though. This still emerging field has not produced a
comprehensive model yet. As a consequence, a first contribution of this paper is such a model
that provides a consolidated view on the current research coverage of API Usability. On this
baseline, the paper continues by conducting an analysis of relevant security studies, which
give insights on usability problems developers had, when using Security APIs. This analysis
leads to a proposal of eleven specific usability characteristics relevant for Security APIs.
These have to be followed up by usability studies in order to evaluate how Security APIs need
to be designed in a usable way and which potential trade-offs have to be balanced.

Keywords

Security APIs, Usable Security, Software Security, API Usability, Evaluation

1. Introduction

One consequence that comes along with the digital transformation and advances in
all spheres of business and life is that sensitive data is increasingly produced, stored,
transmitted and processed in digital form by numerous kinds of electronic devices
and their applications. Moreover, most current software in this context is part of one
or more distributed systems and, thereby, needs to interact with various remote
services. Such interconnected systems are the driving engine for many application
fields including the industry, transportation, energy, consumer and healthcare
domains. A strong demand for security is, henceforth, required in order to protect
users against malicious actions.

Application Programming Interfaces (APIs) are ubiquitously used to develop the
digital transformation in terms of the underlying software. The API concept enables
the simple reuse of functionalities by abstraction. Security services are one such type
of functionality. Due to the high complexity of security concepts, security software
components are designed and implemented by developers specialized in security.

Proceedings of the Tenth International Symposium on
Human Aspects of Information Security & Assurance (HAISA 2016)

253

Non-specialized developers perform the adoption of Security APIs, in contrast. Thus,
the security of contemporary software is heavily depending on the effective use of
Security APIs by common programmers. In fact, the results of recent security studies
give evidence that one main reason for security flaws in deployed software products
lies in the unintended incorrect use of Security APIs, which in turn is caused by bad
API design decisions making them hard to use properly. Defectively integrated
security features in software products are not only originated from novice or hobby
programmers, but also from professional software companies (Fahl et al. 2012).
Thus, this is a far-reaching problem, which cannot only be explained by ignorance
only.

These usability issues of Security APIs affect distinct areas in frontend and backend
software, middleware or platforms and therefore cannot be improved by just fixing
one central hub. So far, no research has been conducted to picture a specific concept
for the usability evaluation of Security APIs. Proposed recommendations in the
context of security studies address symptoms of either respective security
mechanisms like OAuth 2.0 (Hardt, 2012) or execution platforms like Android
(Google, 2016). Thus, one contribution of this paper is an initial proposal of common
and general usability aspects that need to be considered when designing APIs for
security mechanisms.

The rest of the paper is organized as follows. Section 2 defines the term Security API
as required foundational prerequisite. Section 3 presents related work before
introducing the underlying methodology used for this work. A coherent model for
the current state of API Usability is introduced in Section 5. It lays the fundament for
analyzing the degree of maturity and applicability concerning Security API
Usability. Derived supplement evaluation topics of API Usability by so far
unconsidered common and specific characteristics of Security APIs are introduced in
Section 6. The contributions of this paper are summarized and discussed in Section 7
before concluding with an outlook on future work.

2. Security API

The term Security API has first been coined by scientific disciplines focusing on
security protocol analysis. To satisfy the definition by Bond (2004), “a Security API
is an application programmer interface that uses cryptography to enforce a security
policy on the interactions between two entities”. This would exclude APIs, which
don’t apply cryptography to offer security functionalities such as input validation
libraries for reducing the risk of injection attacks including e.g. Cross-Site-Scripting
and SQL Injection (OWASP 2013). Steel (2011) defines Security APIs to be a link
between a trusted and an untrusted area. He also considers its behavior against
arbitrary combinations of function calls. The first aspect doesn’t match e.g. the trust
relationship built by the TLS (Transport Layer Security) (Dierks and Rescorla, 2008)
protocol.

As can be seen, these definitions do not cover all contemporary use cases of Security
APIs in distributed software applications. For the purpose of this paper the term

Proceedings of the Tenth International Symposium on
Human Aspects of Information Security & Assurance (HAISA 2016)

254

Security API is henceforth defined according to the definition of Bond (2004) as
follows: A Security API is an application programming interface that provides
developers with security functionalities that enforces one or more security policies
on the interactions between at least two entities.

3. Related Work

To the knowledge of the authors, there have not been any studies on neither the
usability evaluation of Security APIs nor on the applicability of general API
Usability aspects to Security APIs. Merely minor points of contact with Security
APIs can be found in a few early studies, which examined API usability in general.
Ellis et al. (2007) evaluated the usability of the Factory pattern in API design. In one
of the assigned tasks, the participants have been instructed to instantiate an
SSLSocket using the Java Standard Edition (SE) API version 1.5. Important security
relevant downstream tasks such as certificate validation have been out of focus,
though. Five of twelve participants failed to complete the task in the given time.
Thus, Ellis et al. (2007) concluded, that the Factory pattern hinders usability of an
API. This result provides evidence that general API Usability research also applies to
Security API usability. Still, the Factory pattern is the design of choice to construct
SSLSockets in the latest Java SE version 8. A web authentication task has been part
of a user study conducted by Stylos and Myers (2008). They used a self-modified
version of the Apache Axis2 API (Apache, 2016) in order to focus on specific user
behavior with optional classes. However, the security context has not been
particularly mentioned in the study results.

In a security study conducted by Fahl et al. (2013) first efforts have been undertaken
in the direction of API usability evaluation. They interviewed fourteen developers
who had integrated Secure Socket Layer (SSL) (Freier et al. 2011) defectively in
their applications. Additionally they pre-tested the usability of an own framework
approach for SSL development, but detailed usability measures have not been
described. In the recent past Green and Smith (2015) advocated for more
communication between Security API designers and software developers and the
application of developer-centered design approaches. They also called attention to
the need for qualitative and quantitative empirical studies in this research area.

4. Methodology

To create a solid base for research on the usability of Security APIs a model for
general API Usability is elaborated by an extensive literature research. The result
also allows a consolidated view on the current research coverage, which also glances
at Security APIs and thus emphasizes that the general findings can also be adapted to
security specific contexts. In order to analyze and judge, whether these approaches
are already sufficient to treat Security APIs, specific usability aspects of Security
APIs have to be identified. Concrete indications for poor usability in Security APIs
can almost only be found in the results of security studies so far. Their purpose is,
however, not to perform usability research for identifying general insights about the
design of usable Security APIs. Consequently, such work focuses on

Proceedings of the Tenth International Symposium on
Human Aspects of Information Security & Assurance (HAISA 2016)

255

countermeasures and recommendations for improving security in terms of improved
security mechanisms. To retrieve common and specific characteristics of Security
API Usability, a bottom-up approach has been used, reviewing ten security analysis
publications of the last four years, which do not study malicious attacks but logic
errors. Here, it is possible to establish a relation to usability shortcomings in API
design. Focusing on widely deployed security mechanisms, which are thus relevant
for many developers, studies of the SSL/TLS protocol, the OAuth 2.0 Framework
and OpenID Connect (Sakimura et al. 2014) have been selected.

5. Modeling the Current State of API Usability

As a first contribution of this paper this section introduces an elaborated API
Usability model, which adopts the comprehensive usability model approach by
Winter et al. (2007) and adapts it for the API context. Moreover, a consolidated view
on the current research coverage as well as on untreated topics is integrated in
addition (see Table 1). The considered current work reflects empirical studies only,
because of their scientific validity and excludes guidelines based on expert
knowledge or opinion. The model’s two-dimensional vertical structure has been
determined respecting the ISO 9241-11 (ISO 9241-11, 1998) usability framework.
Hence, a developer’s interaction with an API is influenced by the product (1.) and
the context of use (2.). Following the approach by Winter et al. (2007), the product is
differentiated between the physical interface (1.1) and the logical architecture (1.2).
The documentation (1.3), which is a hardly separable part of an API, is added in
addition. The context of use covers the user (2.1), the task (2.2), the equipment (2.3)
and the environment (2.4). The fine-granular structure is populated with relevant
publications. The space of API design decisions (1.2.3) has, e.g., been introduced by
Stylos and Myers (2007). Some additional aspects, for which no prior research
results could be found, are integrated as well. These can be identified by empty table
cells.

The model’s one-dimensional horizontal structure consists of action targets while a
developer interacts with an API (A-K). These low-level details turned out to be
appropriate for classifying previous research. Available API Usability
recommendations are represented by positive (+), negative (-), positive and

negative (±) or neutral (●) impact indicators. These are strongly related to the
usability context of an empirical study [X]. Due to space constraints more detailed
attributes such as the ones proposed in (Winter et al. 2007) have been suppressed.

The elaborated model visualizes the contemporary space of API Usability, which is
not meant to have an immutable structure, if this is possible at all. Rather this is the
current state of the research field, which can be supplemented and extended by
missed or further findings. It enables an easy access for novices and it allows the
uncovering of open research questions in particular. The model enables to derive that
the available work, because of its basic nature and overall pertinence for all APIs,
builds also a crucial fundament for the usability of Security APIs. But it also can be
seen that still a lot of research has to be done to picture a holistic API Usability
approach. In particular the current space of API Usability doesn’t take specific

Proceedings of the Tenth International Symposium on
Human Aspects of Information Security & Assurance (HAISA 2016)

256

 Interactions / Action Targets

Product / Aspects A
)

Fo
rm

 in
te

n
ti

o
n

B
)

Fi
n

d
 a

n
 A

P
I

C
)

Ex
p

lo
re

 t
h

e
A

P
I

D
)

Fi
n

d
 c

la
ss

, m
et

h
o

d
, e

tc
.

E)
 S

e
le

ct
 c

la
ss

, m
et

h
o

d
 e

tc
.

F)
 C

re
at

in
g

C
o

d
e

G
)

Fi
n

d
 E

xa
m

p
le

H
)

U
n

d
e

rs
ta

n
d

 A
P

I

I)
 D

e
b

u
g

C
o

d
e

J)
 L

e
ar

n
 a

n
 A

P
I

K
)

M
ai

n
ta

in
 a

n
 A

P
I

1. Product

1.1 Physical Interface

1.2 Logical architecture

 1.2.1 Form of appearance

 1.2.1.1 Libraries

 1.2.1.2 Toolkit

 1.2.1.3 Framework

 1.2.1.4 Web-APIs

 1.2.2 Programming Languages

 1.2.2.1 Idioms

 1.2.3 API-design decisions

 1.2.3.1 Structural Design

 1.2.3.1.1 Design Patterns

 1.2.3.1.1.1 Factory Patterns –[1]

 1.2.3.1.2 Package design

 1.2.3.1.2.1 Number of classes –[2]

 1.2.3.1.2.2 Sub packages +[3]

 1.2.3.1.3 Configuration-based design

 1.2.3.1.3.1 Annotations ±[3]

 1.2.3.1.3.2 File-based ±[3]

 1.2.3.1.3.3 Fluent Interfaces ±[3]

 1.2.3.1.3.4 Combinations

 1.2.3.2 Class design

 1.2.3.2.1 Class names +[4] +[5]

 1.2.3.2.2 Design Patterns

 1.2.3.2.2.1 Create-Set-Call +[6]

 1.2.3.2.3 Method placement –[4], ●[4]

 1.2.3.2.4 Number of methods +[2]

 1.2.3.2.5 Method names +[2, 7] +[5]

 1.2.3.2.6 Method overloads –[7]

 1.2.3.2.7 Parameter Design +[4, 5, 8] –[2]

 1.2.3.2.8 Exceptions –[8]

 1.2.3.2.9 Object creation

 1.2.3.2.9.1 Default constructors +[6]

 1.2.3.2.9.2 Optional constructors ●[6]

 1.2.3.2.9.3 Required parameters ●[5], –[6] ●[6]

 1.2.3.2.9.4 Static methods –[2]

 1.2.3.2.10 Access rules +[9]

1.2.4 Implementation of the functionality

 1.2.4.1 Performance

 1.2.4.2 Reliability

1.2.5 Runtime Behavior

1.3 Documentation

1.3.1 Form

 1.3.1.1 Written documentation +[9, 10]

 1.3.1.2 Examples ±[11] +[12], ±[10]

 1.3.1.3 Runnable tests

 1.3.1.4 Comments in source code +[12] +[5]

 1.3.1.5 Web resources ± [8]

1.3.2 Content

 1.3.2.1 Design concept +[10]

2. Context of use
2.1 User

2.1.1 User types

2.1.2 Skills and knowledge

2.1.3 Personal attributes

 2.1.3.1 Programming Style ±[13] ±[13]

2.1.4 Expectations

 2.1.4.1 Mental models +[14]

 2.1.4.2 Conventions +[12]

2.2 Task

2.2.1 Security-critical requirements

2.3 Equipment

2.3.1 Development Environment

 2.3.1.1 Operating systems

 2.3.1.2 IDEs +[7]

 2.3.1.3 Web resources ±[11]

2.3.2 Development Tools

 2.3.2.1 Debugger

 2.3.2.2 Auto completion +[7, 15] +[16, 17]

 2.3.2.3 Text editor

 2.3.2.4 Web-search +[11], ±[18]

 2.3.2.5 Recommendations +[19] +[20] +[21]

2.4 Environment

2.4.1 Organizational environment

 2.4.1.1 Development processes

2.4.2 Technical Environment

 2.4.2.1 Development Guidelines +[22]

2.4.3 Physical Environment

2.4.4 Social Environment

Legend: + positive impact | − negaƟve impact | ± pos. as well as neg. impact | ● neutral | [X] In the usability context of the empirical study X:

[1]: (Ellis et al. 2007); [2]: (Scheller and Kühn, 2012); [3]: (Scheller and Kühn, 2013b); [4]: (Stylos and Myers, 2008); [5]: (Piccioni et al. 2013);
[6]: (Stylos and Clarke, 2007); [7]: (Scheller and Kühn, 2013a); [8]: (Duala-Ekoko and Robillard, 2012); [9]: (Zibran et al. 2011); [10]: (Robillard, 2009);
[11]: (Brandt et al. 2009); [12]: (McLellan et al. 1998); [13]: (Clarke, 2011); [14]: (Stylos et al. 2006); [15]: (Bruch et al. 2009); [16]: (Mooty et al. 2010);
[17]: (Omar et al. 2012); [18]: (Stylos and Myers, 2006); [19]: (Duala-Ekoko and Robillard, 2011); [20]: (Asaduzzaman et al. 2015); [21]: (Zhong et al. 2009);
[22]: (Espinha et al. 2014)

Table 1: The space of API Usability

Proceedings of the Tenth International Symposium on
Human Aspects of Information Security & Assurance (HAISA 2016)

257

usability characteristics of Security APIs into account.

6. Towards the Usability Evaluation of Security APIs

When analyzing the outcomes of recent security studies in the light of API Usability,
it becomes clear that current API Usability research already provides some baseline
approaches and tools for the usability evaluation of Security APIs. This is by far not
sufficient enough for this special context of use, though. With the methodology
described in Section 4, it has been possible to derive eleven Security API specific
usability characteristics, which are introduced in the subsequent sections. Concrete
usability aspects, with a lower level of abstraction, like those listed in the space of
API Usability (see Table 1), have to be elaborated by further evaluations of these
identified characteristics. Thus, the goal of consecutive research should be to extent
the introduced API Usability model introduced in Section 5 for the particular space
of Security API Usability.

6.1. End-user Protection

Intentional or unintentional defective software implementations can cause
compromised user information security, often without the users even noticing. Thus,
especially Security APIs must be designed while keeping the end-user’s security in
mind, also because this is its actual intention in the first place. The End-user
Protection characteristic describes an API’s ability to reduce or eliminate this
dependency from the programmers. The “User Protection” characteristic has been
proposed by Fahl et al. (2013) and they have defined it as a limitation of a
developer’s capabilities to prevent an invisible risk for end-user data. This definition
has been based on the observation that developers of mobile applications take full
responsibility for integrating of security functionalities as well as for communicating
any security relevant information to end-users (Fahl et al. 2012), (Fahl et al. 2013).

In (Georgiev et al. 2012) corresponding issues have been identified for various
SSL/TLS libraries, software development kits and middleware. Wang et al. (2012)
refer to a due diligence for application developers who implement relying party
components in single sign on systems. According to Wang et al. (2012) application
developers are finally responsible for orchestrating user applications, relying parties
and identity providers in a secure manner. But this is also true for programmers who
implement libraries, software development kits or frameworks. An incorrect
handling of tokens caused by unusable Security APIs in any of those software
products could lead to the unauthorized access of user accounts even without
possessing any credentials. Thus, a due diligence exists for all persons involved in a
software development process to ensure the required End-user Protection.

6.2. Case Distinction Management

Error prevention and the handling of exceptions and errors are crucial aspects of
APIs in general, but are indispensable for Security APIs. The term Case Distinction
Management is introduced to name all considerable events, which might happen. In

Proceedings of the Tenth International Symposium on
Human Aspects of Information Security & Assurance (HAISA 2016)

258

the context of Security APIs, special attention needs to be drawn to exceptional
events like e.g. a negative certificate validation, since this does not hinder security
measures, but it is an essential implication to preserve them. As such cases happen
frequently, they should not be treated as rare exceptions or software errors. In fact,
these cases have to be well managed by an API design that empowers developers in
handling case distinctions correctly.

The verification process of certificates, e.g., is a crucial part of the SSL/TLS protocol
for establishing a trust relationship between client and server. This includes e.g.
chain-of-trust verification, hostname verification and the review of the certificates’
status. Georgiev et al. (2012) found that security critical events are indicated
inconsistently by runtime errors, return values or internal flags, which have to be
validated by additional function calls. This already resulted in the overriding of
security functionalities in deployed software.

6.3. Adherence to Security Principles

More than forty years ago, Saltzer and Schroeder (1975) described fundamental
principles of information security, which are still approved and prevailing. Since
then, further principles have been evolved mostly with a specific focus, such as the
“OWASP Coding Practices” (OWASP 2010) and documented risks like the
“CWE/SANS Top 25 Most Dangerous Software Errors” (CWE 2011). By taking
these security principles into account in the context of usable Security APIs, this
introduced characteristic communicates explicitly, that adhering to the principles in
API design will increase the effective use of the interfaces.

Several different examples where API design decisions are violating these and other
security principles can be found in security studies. One of them is the Android
SSL/TLS library (Google, 2016). In some parts it contradicts the “economy of
mechanism” principle. Android applications are normally exchanging data with just
a few hosts. Still, the Android system commonly trusts over 100 Certificate
Authorities (CA) by default. Mechanisms like certificate or public key pinning,
which allow selecting only needed CAs, have to be self-implemented by developers.
As a consequence, they are forced to take a higher security risk by default. It has
been shown that certificate or public key pinning is not in widespread use for
Android (Fahl et al. 2012) or Web (Kranch and Bonneau, 2015) applications.

6.4. Testability

The security studies that this analysis is built upon are prime examples for how
difficult it is for common software developers to test security mechanisms in their
applications. Much effort and expertise is needed to develop test beds for static code
analysis and conduct manual code audits. Still, software developers need to see
clearly if security mechanism have been adopted, integrated and deployed correctly
and this needs to be examined not only by self-written unit test code. Due to a lack of
time and expertise or sometimes also the blind faith, some developers do not test
integrated libraries or used frameworks at all (Fahl et al. 2013). Not less badly, even

Proceedings of the Tenth International Symposium on
Human Aspects of Information Security & Assurance (HAISA 2016)

259

modified code for testing purposes finds its way in deployed software products,
causing security flaws (Georgiev et al. 2012). Supporting and reliable test routines,
written by security experts, e.g., for certificate validation and adversarial testing in
TLS implementations (Brubaker et al. 2014), should be available and easy to apply
for programmers in typical use-cases.

6.5. Constrainability

It is in the nature of programming to customize code in order to meet the
requirements. But customization in the context of security appears to cause
substantial risks. There are functionalities like data validation where constraints
represent essential means to establish security (Kern, 2015), e.g. against Cross-Site-
Scripting. Georgiev et al. (2012) state “in general, disabling proper certificate
validation appears to be the developers’ preferred solution to any problem with SSL
libraries.” These findings seem to legitimate constraining the usage of a Security
API and indicate a tradeoff between flexibility and error susceptibility in this
context. If customization tends to be the rule rather than the exception, though, the
design decisions of a Security API are most probably not appropriate for its target
audience and thus has to be reconsidered. Evaluations have to show in which
situations usage constraints support or hinder the usability of Security API.

The configurability of security mechanisms might be a usable instrument to force
constraints. (Fahl et al. 2013) have proposed an approach for SSL/TLS development
on Android, based on configuration instead of writing source code. Yet there have
not been conducted any comparing usability studies to see if this is suitable in
general for Security APIs. Examples showing the opposite can be found in emerging
HTTP Strict Transport Security (HSTS) (Hodges et al. 2012) implementations,
though. One crucial part of HSTS application is the HTTP header configuration. First
deployed utilizations have not been in conformance with the standard, used
malformed headers and misused header values mostly resulting in undermined
security of end-users (Kranch and Bonneau, 2015). This makes obvious that the
configuration of security functionalities, which also is an API aspect, has uncovered
usability issues. This confirms the continuing trend of overriding security
functionalities encouraged by unusable APIs for new security features in addition.

6.6. Information Obligation

The end-user as well as the application developer using APIs have to be well
informed of security relevant specifics. The major challenge is to provide crucial
information at the right place, in the right moment and in a usable manner (Garfinkel
and Richter Lipford, 2014). If an application is designed without any protection
means for confidentiality, e.g. ignoring SSL/TLS connections, an end-user will be
incapable of responding to this situation, due to the lack of information. The same is
true for Security APIs, which do not communicate security implications intrinsically
by documentation or via development tools to the developer. A Security API must
support application developers in communicating security relevant information to the
end-user in a usable way.

Proceedings of the Tenth International Symposium on
Human Aspects of Information Security & Assurance (HAISA 2016)

260

6.7. Degree of Reliability

Application developers, who see themselves confronted with a security related
programming task, need reliable information resources and APIs. This have been
uncovered by interviews conducted with developers who implemented security
mechanisms incorrectly (Fahl et al. 2013). When running into problems or unknown
terrain, programmers make heavy use of Web resources. Still, the presented code
fragments might come from an equal inexperienced source and should not be trusted
without additional examination. Therefore reliable testing tools, as well as visible
trust indicators preferably issued by a reliable institution are needed. Usability
evaluations should examine what kind of resources application developers actually
trust. This could be measured by a self-assessment asking for the level of confidence
in own security relevant implementations. The results should indicate who should
primarily deliver approved information or well tested code examples for various use
cases to match the developers’ expectations.

6.8. Security Prerequisites

Security APIs have mandatory prerequisites, which have to be fulfilled by developers
to apply the provided security functionality effectively. It has become evident that
Security Prerequisites are unknown, unclear or misused in many cases. Relying
parties implementing OAuth 2.0 missed to utilize SSL/TLS for the protocol being
confidential (Sun and Beznosov, 2012). R. Wang et al. (2012) notice shortcomings
in correctly protecting and verifying tokens in single sign on systems. They suspect a
missing comprehension of security implications to be the reason. Li and Mitchell
(2014) were able to identify deficiencies against Cross-Site Request Forgery (CSRF)
attacks in productive services caused by misused parameters. Static and guessable
values have e.g. been used instead of unique character sequences. API designers
have to respect their obligation to inform and support developers to counteract
security risks caused by non-fulfillment of security prerequisites.

6.9. Execution Platform

Security APIs are needed in several different execution platforms. To be securely
applicable they have to be tailored for different ecosystems. This includes existing
platform specific possibilities and risks in particular. Software vulnerabilities can be
traced back to API design, which does not consider execution platform specifics,
which are exploitable by attackers and thus are able to compromise security
functionalities (R. Wang et al. 2012). Using the OAuth 2.0 client-flow in web
browsers, e.g., expose tokens to various browser specific attack vectors. Thus, Sun
and Beznosov (2012) “believe that OAuth 2.0 at the hand of most developers –
without a deep understanding of web security – is likely to produce insecure
implementations.” Chen et al. (2014) call attention to sensitive differences between
mobile and Web platforms showing difficulties in adapting OAuth for mobile
applications, again leading to high numbers of vulnerable implementations. SSL/TLS
was intentionally designed for the browser environment. Its prevalent employment
for transport security in non-browser applications such as Android (Fahl et al. 2012,

Proceedings of the Tenth International Symposium on
Human Aspects of Information Security & Assurance (HAISA 2016)

261

H. Wang et al. 2015), iOS (Fahl et al. 2013) and other platforms (Georgiev et al.
2012) lead to widespread man-in-the-middle vulnerabilities potentially affecting
millions of end-users. From this follows that Security API design process has to
consider target execution platforms and needs of their developers. A central question
here is, how security implications can be communicated effectively during
development processes.

6.10. Delegation

The delegation of implementing security functionalities or informing end-users to
unspecialized developers can be seen in already mentioned cases where this shift of
responsibility had lead to incorrect implementations. Georgiev et al. (2012) found
several SSL/TLS libraries delegating hostname verification or certificate validation
to higher-level software. Brubaker et al. (2014) even encountered missing code in an
“if” condition which just provided a comment of the API designer. This is especially
critical if API users assume a complete security solution and instead get just a partial
coverage. In such cases developers have to get well informed about open
implementation tasks to fulfill security prerequisites. Even better would be to suggest
concrete solutions or reliable best practices.

6.11. Implementation Error Susceptibility

The overall goal of Security API usability research should be to minimize the error
susceptibility, which significantly rises by ignoring each aforementioned
characteristic. Research need to strive a holistic approach to address end-user
protection, case distinction management, adherence to information security
principles, testability, constrainability, information obligation, degree of reliability,
security prerequisites, execution platforms and delegation.

7. Conclusion and Outlook

Security APIs provide access to crucial building blocks that are indispensable in
contemporary and future software systems. Thus, the incorrect or insufficient use of
such APIs lead to extensive security flaws, which compromise end-user information
security. As one reason for this problem, unusable API design decisions have been
identified by several security studies. To effectively counteract these issues, the
usability of Security APIs has to be improved by further research in the general field
of API Usability and by initiating specific research activities in Security API
Usability. For this purpose a comprehensive model to cover the current space of API
Usability and to point out examined as well as open research questions has been
introduced. This model has been further enriched by an extensive literature analysis
of security studies. By this, it has been possible to identify eleven security specific
usability characteristics, which has to be subject in future evaluations of Security
APIs. Thereby, the present paper laid the ground for future research and development
work in this field. The introduced eleven specific usability characteristics of Security
APIs might still be an incomplete set of relevant topics. Future research will be

Proceedings of the Tenth International Symposium on
Human Aspects of Information Security & Assurance (HAISA 2016)

262

conducted to confirm the set in order to obtain a validated baseline for the usability
evaluation of Security APIs.

8. Acknowledgment

This work has been funded by the German Federal Ministry for Economic Affairs
and Energy (Grant no. 01MU14002).

9. References

Apache (2016). “Welcome to Apache Axis2/Java”, http://axis.apache.org/axis2/java/core/,
(Accessed 21 March 2016)

Asaduzzaman, M., Roy, C. K. , Monir, S. and Schneider, K. A. (2015). “Exploring API
method parameter recommendations”. International Conference on Software Maintenance and
Evolution (ICSME ’15). Bremen, DE.

Bond, M. K. (2004). “Understanding Security APIs”. Dissertation. University of Cambridge.

Brandt, J., Guo, P. J., Lewenstein, J., Dontcheva, M. and Klemmer, S. R. (2009). “Two studies
of opportunistic programming: interleaving web foraging, learning, and writing code”.
SIGCHI Conference on Human Factors in Computing Systems (CHI ’09). Boston, MA, U.S.A.

Brubaker, C., Jana, S., Ray, B., Khurshid, S. and Shmatikov, V. (2014). “Using Frankencerts
for Automated Adversarial Testing of Certificate Validation in SSL/TLS Implementations”.
35th IEEE Symposium on Security and Privacy (S&P ’14). San Jose, CA, U.S.A.

Bruch, M., Monperrus, M. and Mezini, M. (2009). “Learning from examples to improve code
completion systems”. 7th joint meeting of the European software engineering conference and
the ACM SIGSOFT symposium on The foundations of software engineering. (ESEC/FSE ’09).
Amsterdam, NL.

Chen, E., Pei, Y., Chen, S., Tian, Y., Kotcher, R. and Tague, P. (2014). “OAuth Demystified
for Mobile Application Developers”. 21st ACM SIGSAC Conference on Computer and
Communications Security (CCS ’14). Scottsdale, AZ, U.S.A.

Clarke, S. (2011). “How Usable Are Your APIs?” Making software: what really works, and
why we believe it. Oram, A. and Wilson, G. (Ed.). 1st ed., Theory in practice. Beijing:
O’Reilly, S. 545–565. ISBN: 978-0-596-80832-7.

CWE (2011). “2011 CWE/SANS Top 25 Most Dangerous Software Errors Version: 1.0.3”.
Christey, S. (Ed.). The MITRE Corporation. http://cwe.mitre.org/top25/

Dierks, T. and Rescorla, E. (2008). “The Transport Layer Security (TLS) Protocol Version
1.2.” RFC 5246, Proposed Standard. Internet Engineering Task Force.

Duala-Ekoko, E. and Robillard, M. P. (2011). “Using Structure-Based Recommendations to
Facilitate Discoverability in APIs”. 25th European Conference on Object-Oriented
Programming (ECOOP ’11). Lancaster, U.K.

Proceedings of the Tenth International Symposium on
Human Aspects of Information Security & Assurance (HAISA 2016)

263

Duala-Ekoko, E. and Robillard, M. P. (2012). “Asking and Answering Questions about
Unfamiliar APIs: An Exploratory Study”. 34th International Conference on Software
Engineering (ICSE ’12). Zurich, CH.

Ellis, B., Stylos, J. and Myers, B. (2007). “The Factory Pattern in API Design: A Usability
Evaluation”. 29 th International Conference on Software Engineering (ICSE ’07). Minneapolis,
MN, U.S.A.

Espinha, T., Zaidman, A. and Gross, H.-G. (2014). “Web API growing pains: Stories from
client developers and their code”. IEEE Conference on Software Maintenance, Reengineering
and Reverse Engineering, Software Evolution Week (CSMR-WCRE ’14). Antwerp, BE.

Fahl, S., Harbach, M., Muders, T., Smith, M., Baumgärtner L. and Freisleben, B. (2012).
“Why Eve and Mallory Love Android: An Analysis of Android SSL (In)Security”, ACM
Conference on Computer and Communications Security (CCS ’12). Raleigh, NC, U.S.A.

Fahl, S., Harbach, M., Perl, H., Koetter, M. and Smith, M. (2013). “Rethinking SSL
Development in an Appified World”, ACM SIGSAC Conference on Computer and
Communications Security (CCS’13). Berlin, DE.

Freier, A., Karlton, P. and Kocher, P. (2011). “The Secure Sockets Layer (SSL) Protocol
Version 3.0” RFC 6101, Historic, Internet Engineering Task Force.

Garfinkel, S. and Richter Lipford, H. (2014). “Usable Security: History, Themes, and
Challenges”, Bertino, E. and Sandhu, R. (Ed.) Synthesis Lectures on Information Security,
Privacy, and Trust, Morgan & Claypool, San Rafael, ISBN: 978-1-62705-529-1.

Georgiev, M., Iyengar, S., Jana, S., Anubhai, R., BonehD. and Shmatikov, V. (2012). “The
Most Dangerous Code in the World: Validating SSL Certificates in Non-Browser Software”.
ACM Conference on Computer and Communications Security (CCS’ 12). Raleigh, NC, U.S.A.

Google (2016). “Android Developers - Best Practices for Security & Privacy”,
https://developer.android.com/training/best-security.html, (Accessed 19 March 2016)

Green, M. and Smith, M. (2015). “Developers Are Users Too: Designing Crypto and Security
APIs That Busy Engineers and Sysadmins Can Use Securely”. Talk at the USENIX Summit on
Hot Topics in Security (HotSec ’15). Washington, D.C., U.S.A.

Hardt, D. (2012). “The OAuth 2.0 Authorization Framework”, RFC 6749, Proposed Standard.
Internet Engineering Task Force.

Hodges, J., Jackson, C. and Barth, A. (2012). “HTTP Strict Transport Security (HSTS)”, RFC
6797, Proposed Standard. Internet Engineering Task Force.

ISO 9241-11 (1998). “Ergonomic requirements for office work with visual display terminals
(VDTs) – Part 11: Guidance on usability” International Standard, The International
Organization for Standardization

Kern, C. (2015). “Preventing Security Bugs through Software Design”. Talk at the 24th
USENIX Security Symposium (USENIX Security ‘15). Washington, D.C., U.S.A.

Kranch, M. and Bonneau, J. (2015). “Upgrading HTTPS in Mid-Air: An Empirical Study of
Strict Transport Security and Key Pinning”. The Network and Distributed System Security
Symposium (NDSS ’15). San Diego, California, U.S.A.

Proceedings of the Tenth International Symposium on
Human Aspects of Information Security & Assurance (HAISA 2016)

264

Li, W., and Mitchell, C. J. (2014). “Security issues in OAuth 2.0 SSO implementations”, 17th
International Information Security Conference (ISC '14), Hong Kong, CN.

McLellan, S. G., Roesler, A. W., Tempest, J. T. and Spinuzzi, C. I. (1998). “Building More
Usable APIs”. IEEE Software 15.3, S. 78–86.

Mooty, M., Faulring, A., Stylos, J. and Myers, B. A. (2010). “Calcite: Completing Code
Completion for Constructors Using Crowds”. IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC ’10). Leganes, ES.

Omar, C., Yoon, Y. S., LaToza, T. D. and Myers, B. A. (2012). “Active code completion”.
34th International Conference on Software Engineering (ICSE ’12). Zurich, CH.

OWASP (2010). “OWASP Secure Coding Practices - Quick Reference Guide Version 2.0”.
OWASP - The Open Web Application Security Project. https://www.owasp.org/index.php/
OWASP_Secure_Coding_Practices_-_Quick_Reference_Guide

OWASP (2013). “OWASP Top 10 - 2013 - The Top 10 Most Critical Web Application
Security Risks”. Williams, J. and Wichers, D. (Ed.). OWASP - The Open Web Application
Security Project. https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

Piccioni, M., Furia, C. A. and Meyer, B. (2013). “An Empirical Study of API Usability”.
ACM/IEEE International Symposium on Empirical Software Engineering and Measurement
(ESEM ’13). Baltimore, Maryland, U.S.A.

Robillard, M. P. (2009). “What Makes APIs Hard to Learn? Answers from Developers”. IEEE
Software 26.6, S. 27–34.

Sakimura, N., Bradley, J., Jones, M., de Medeiros, B. and Mortimore, C. (2014). “OpenID
Connect Core 1.0 incorporating errata set 1”, Final Specification, The OpenID Foundation.

Saltzer, J. H., and Schroeder, M. D. (1975). “The protection of information in computer
systems”. Proceedings of the IEEE 63.9, S. 1278–1308.

Scheller, T. and Kühn, E. (2012). “Influencing Factors on the Usability of API Classes and
Methods”. 19th International Conference and Workshops on Engineering of Computer-Based
Systems (ECBS ’12). Novi Sad, RS.

Scheller, T. and Kühn, E. (2013a). “Influence of Code Completion Methods on the Usability
of APIs”. 12th IASTED International Conference on Software Engineering (SE ’13).
Innsbruck, AT.

Scheller, T. and Kühn, E. (2013b). “Usability Evaluation of Configuration-Based API Design
Concepts”. 1st International Conference on Human Factors in Computing & Informatics.
South (CHI ’13). Maribor, SI.

Steel, G. (2011). “Formal Analysis of Security APIs”, Van Tilborg, H. C. A. and Jajodia, S.
(Ed.). Encyclopedia of Cryptography and Security, Springer, Boston, MA, S. 492–494, ISBN:
978-1-4419-5907-2

Stylos, J. and Clarke S. (2007). “Usability Implications of Requiring Parameters in Objects’
Constructors”. 29th International Conference on Software Engineering (ICSE ’07).
Minneapolis, MN, U.S.A.

Proceedings of the Tenth International Symposium on
Human Aspects of Information Security & Assurance (HAISA 2016)

265

Stylos, J., Clarke, S., Myers, B. A. (2006). “Comparing API Design Choices with Usability
Studies: A Case Study and Future Directions”. 18th Workshop of the Psychology of
Programming Interest Group (PPIG ’06). Brighton, UK.

Stylos, J. and Myers, B. A. (2006). “Mica: A Web-Search Tool for Finding API Components
and Examples”. IEEE Symposium on Visual Languages and Human-Centric Computing.
(VL/HCC ’06). Brighton, U.K.

Stylos, J. and Myers, B. A. (2007). “Mapping the Space of API Design Decisions”, IEEE
Symposium on Visual Languages and Human-Centric Computing (VL/HCC ’07). Coeur
d’Alene, ID, U.S.A.

Stylos, J. and Myers, B. A. (2008). “The Implications of Method Placement on API
Learnability”. The 16th ACM SIGSOFT International Symposium on Foundations of Software
Engineering (SIGSOFT ’08/FSE-16). Atlanta, GA, U.S.A.

Sun, S.-T. and Beznosov, K. (2012). “The Devil is in the (Implementation) Details: An
Empirical Analysis of OAuth SSO Systems“. The ACM Conference on Computer and
Communications Security (CSS ’12), Raleigh, NC, U.S.A.

Wang, H., Zhang, Y., Li, J., Liu, H., Yang, W., Li, B. and Gu, D. (2015). “Vulnerability
Assessment of OAuth Implementations in Android Applications”. 31st Annual Computer
Security Applications Conference (ACSAC ’15). Los Angeles, CA, U.S.A.

Wang, R., Chen, S., and Wang, X.F. (2012). “Signing Me onto Your Accounts through
Facebook and Google: A Traffic-Guided Security Study of Commercially Deployed Single-
Sign-On Web Services”, IEEE Symposium on Security and Privacy (S&P ’12). San Francisco,
CA, U.S.A.

Winter, S., Wagner, S. and Deissenboeck, F. (2007). “A Comprehensive Model of Usability”.
Engineering Interactive Systems Joint Working Conferences (EHCI ’07, DSV-IS ’07, HCSE
’07. EIS ’07). Salamanca, ES.

Zhong, H., Xie, T., Zhang, L., Pei, J. and Mei, H. (2009). “MAPO: Mining and
Recommending API Usage Patterns”. 23rd European Conference on Object-Oriented
Programming (ECOOP ’09). Genoa, IT,

Zibran, M. F., Eishita, F. Z. and Roy, C. K. (2011). “Useful, But Usable? Factors Affecting the
Usability of APIs”. 18th Working Conference on Reverse Engineering (WCRE ’11). Limerick,
IE.

