
Proceedings of the Tenth International Symposium on
Human Aspects of Information Security & Assurance (HAISA 2016)

290

Near-Miss Analysis and the Availability of Software
Systems

J.H.P. Eloff and M.A. Bihina Bella,

Cybersecurity & Data Science Research Groups, Department of Computer Science,
University of Pretoria, Pretoria, South Africa
e-mail: eloff@cs.up.ac.za, mbihina@yahoo.fr

Abstract

Software failures often result in unavailability of systems causing disasters ranging from
financial loss to loss of lives. Preventing their recurrence is therefore absolutely necessary. To
this end, a post-mortem investigation of a software failure is usually conducted to identify its
root cause. However, these investigations most often lack efficiency and accuracy, as they are
dependent on human expertise and level of knowledge of the system, and are therefore
subjective in nature. Furthermore, investigating a software failure can be challenging due to
the usually high volume of failure data - such as log entries - to be scrutinised. To address this
problem, near-miss analysis is proposed. Near-miss analysis is an incident investigation
technique that detects indicators of a likely failure before the failure unfolds. As these
indicators – known as near misses – that are very close to the point of failure, they are most
likely to point to its root cause. Near-miss analysis therefore offers an objective method to
root-cause analysis based on the data collected from the near misses. The near-miss analysis
method proposed in this paper is based on the pattern analysis of a software system’s
behaviour close to a failure in order to identify near misses. The viability of the proposed
method is demonstrated through an experiment.

Keywords

Software failure, near miss, pattern analysis

1. Introduction

Software failures disrupt the availability of a system, which results in data loss and
data corruption and compromises the integrity of the related information. This often
causes disasters ranging from financial loss to loss of lives. Preventing the recurrence
of such major software failures is therefore crucial. Availability of software systems
and information assets in general, together with confidentiality and integrity, forms
the primary building blocks for safeguarding information and the related systems
(Pfleeger & Pfleeger, 2007). Availability of software systems and in particular
software failure analysis is of particular interest for the research at hand.

Consider for example the unavailability of a banking system at the Royal Bank of
Scotland (RBS), a major bank in the UK, in December 2013. Due to an unspecified
technical glitch, the bank’s various electronic channels were unavailable for a day
and customers were unable to transact (Finnegan, 2013). This failure was not the first
experienced by RBS. In June 2012, another major outage occurred and left millions

Proceedings of the Tenth International Symposium on
Human Aspects of Information Security & Assurance (HAISA 2016)

291

of customers unable to access their bank accounts for four days, due to a failure in
the batch-scheduling software at the bank. As a result, deposits were not reflected in
bank accounts, payrolls were delayed, credit ratings downgraded and utility bills not
paid. In November 2014, RBS was fined 56 million pounds by British regulators for
the 2012 outage (BBC News, 2014).

In cases like the above-mentioned a post-mortem investigation is usually required to
identify their root cause. However, history shows that such an investigation is often
conducted inefficiently and inaccurately, as it is dependent on human expertise and
skills. Most often, investigators initially “diagnose” the software failures based on
their own experience with the system and then do a number of troubleshooting
attempts. Furthermore, there is no common procedure that an investigator can follow
for investigating software failures in order to identify the root cause. This leads to a
root cause investigation process that is based on human subjectivity. Other methods
followed for failure analysis, although valuable, focus on performance improvement
and not on preventing the recurrence of software failures; hence some manual
guessing about the root cause of the failure is required (Neebula.com, 2012).

Due to the prevalence of catastrophes such as the Royal Bank of Scotland example
quoted above, various studies (Stephenson, 2003; Hatton, 2004; Corby, 2011; Meyer,
2011) have focused on improving the usual ad-hoc approach to root-cause analysis.
Most often adding structure and formal modelling to the investigation process does
this. The research at hand rather focuses on the enablement of investigators to make
the root cause investigation process more objective as well as to generate scientific
evidence. This is accomplished through introducing near-miss analysis as a
technique for investigating software failures (Bihina Bella et al. 2011).

Near-miss analysis is a technique used in the domain of risk analysis and safety for
the prevention and investigation of accidents. Near-miss analysis refers to the
detection and causal analysis of near misses. By definition, a near miss is a high-risk
event that could have led to an accident, but did not due to some timely intervention
or by chance (Jones et al. 1999). Almost all major accidents are preceded by a
number of near misses (Phimister et al. 2004). Near misses are therefore warning
signs or indicators of an upcoming failure. However, contrary to other indicators
preceding the failure, a near miss is the closest to the point of failure; in other words,
it is the closest to the time window during which the failure occurs. This concept can
be better explained with an example.

Consider for instance a potential car collision at a busy intersection. This potential
accident could have been preceded by the following sequence of events: (1) a driver
crossing a red traffic light, (2) the driver over speeding, and (3) the driver struggling
to slow down when noticing an incoming car. In the above scenario, the last high-
risk event, Event (3), is the near-miss event as it is the closest to the potential crash.
The fact that the collision was avoided, maybe due to the carefulness of the driver of
the incoming car, makes this sequence of events a near miss.

Proceedings of the Tenth International Symposium on
Human Aspects of Information Security & Assurance (HAISA 2016)

292

As near misses point to the possibly last indicator of an impending failure, they
provide a fairly complete set of data about that failure. In the case of a software
application, this data is likely to contain behavioural patterns close to the point of
failure that can hint at its root cause. The evidence collection effort can therefore be
limited to data about these patterns, eliminating the collection of less relevant data.

Common causes of software failures include resource exhaustion and logic errors.
Resource exhaustion such as running out of available memory is taken as a use case
for the research at hand. Consider for example a software system developed in C++
that does not give adequate warning should external memory become unavailable.
This type of software failure can only be located through investigating output
provided by the system executing. This output is most often in the form of failures
logs and can be generated by either the operating system or the application itself. It is
for this reason that the paper at hand demonstrates the application of near-miss
analysis for investigating and preventing software failures by means of failure log
analysis. This near-miss analysis is based on the pattern analysis of software failures.

The remainder of this paper is organised as follows. Section 2 reviews previous work
on near-miss analysis to assess its suitability for software failure analysis. Section 3
presents our proposed near-miss analysis method. Finally, Section 4 presents an
experiment to demonstrate the viability of the proposed method.

2. Previous work on near-miss detection

The detection of near misses usually involves assessing the risk level of an observed
unsafe event or calculating the likelihood that this event can lead to a failure.
Examples of such events include the degradation of plant conditions and the failures
of safety equipment (Belles et al. 2000). A common technique proposed for this
purpose is Bayesian statistics (Belles et al. 2000) to calculate the conditional
probability of an accident given the occurrence of the risky event. Probabilistic risk
analysis (PRA) is also a recurring suggestion. PRA consists of estimating the risk of
failure of a complex system by breaking it down into its various components and
determining potential failure sequences (Phimister et al. 2004). Some research has
also been conducted to find generic metrics or signs of an upcoming accident, such
as equipment failure rates (Leveson, 2015).

Some qualitative approaches to near-miss detection have also been proposed. For
instance, in some organizations, the detection of near misses is simply based on a
listing of potential hazards such as a toxic chemical leak or an improperly closed
switchbox (Ritwik, 2002). These examples are often obtained from incident reporting
systems. Another technique also used is the Delphi method. The Delphi method is a
group decision-making tool that can be used to obtain information on the probability
of an accident from a panel of experts (Pimister et al. 2004).

In all the above techniques, near misses are usually identified as those events that
exceed a predefined level of severity. This limits their application to software
failures. Indeed, a high threshold may overlook significant events that were not

Proceedings of the Tenth International Symposium on
Human Aspects of Information Security & Assurance (HAISA 2016)

293

anticipated, especially in new or immature software systems, while a low threshold
will likely result in many false alarms. Besides, generic metrics of near misses might
not be applicable to all types of systems and all types of failures. Another major
limitation of the above techniques is the fact that they rely on the observation of
physical events or conditions. However, in the case of software failures, some near
misses might not be visible at all, as no failure actually occurred. A more flexible
method to detect near misses is required in the case of software failures. The method
proposed in this paper is described in the next section.

3. Proposed near-miss method for software failure analysis

The purpose of the near miss analysis method discussed in this section is twofold:
Firstly, it demonstrates how to collect relevant information about an unfolding
software failure. Secondly, it shows how to use the collected information for
constructing near miss indicators that can play a role for the prevention of similar
software failures in the future. This is illustrated in Figure 1.

Failure
logs

End-to-end
pattern
analysis

Exact same
behaviour ?

End
(no near-miss

indicator)

Identify change
in behaviour
close to the

fai lure

Compare to
behaviour before the

change (expected
behaviour)

Significant
change?

End
(unclear near-
miss indicator)

Establish near-
miss indicators

Create near-
miss formula

Yes

No

No

Yes

Apply formula
to event logs

End

Collect near-
miss data

Raise an alert for
logs that match

the formula

First phase: after initial failure

Second phase: before next failure

Start

Figure 1: High-level flowchart of proposed near-miss method

The first phase is conducted after the occurrence of a new failure, from the analysis
of the failure logs. The logs are analysed to compare the expected system’s
behaviour to the behaviour close to the failure in order to identify some “warning
signs” of the failure. The expected behaviour is derived from the end-to-end pattern
analysis of the system’s transactions. The goal of this phase is the creation of a near-
miss formula that defines near misses for the failure at hand. The near-miss formula
combines all the identified warning signs of the failure, which we refer to as “near-
miss indicators”. The formula is a mathematical expression of the interdependencies
between the near-miss indicators. These indicators signal a significant deviation from
the operational expectation of a monitored system. The near-miss formula will
obviously be specific to the failure and system at hand, but the process to create the
formula can be applied to any system or failure type.

The second phase is the detection of near misses at runtime before the reoccurrence
of a similar failure. The near-miss formula is applied to the logs of the monitored
system as they are generated so that potential near misses can be detected prior to a
failure. When some log entry matches the formula, an alert is raised and data relating
to the near-miss indicators is collected for the suspicious log. This data is then used

Proceedings of the Tenth International Symposium on
Human Aspects of Information Security & Assurance (HAISA 2016)

294

as evidence for the ensuing root-cause analysis if the failure unfolds. This near-miss
detection method identifies the information relevant to the root-cause analysis and it
indicates when to collect this information.

4. Application of the near-miss detection method

This section demonstrates the application of the near-miss detection method through
an experiment. The experiment shows the analysis of a software failure with a view
to identifying near-miss indicators, so it is limited to the first phase of the method.
The demonstration follows a scientific method: formulating a hypothesis, predicting
evidence for the hypothesis, and testing the hypothesis with an experiment
(Bernstein, 2009). Furthermore, it employs SOM (Self-Organizing-Maps)
(Engelbrecht, 2007) data analysis technique to analyse the logs of the failure.

The reason for using SOM is that it enables pattern identification in big data sets.
Patterns in a system’s behaviour can be used to signal an unfolding systems’ crash.
Furthermore SOM is an unsupervised learning technique, which is useful seeing that
the causes for a system crash are unknown before the crash occurs. Unsupervised
learning classifies input data, represented as vectors, based on similarity. Similar
vectors are grouped in the same cluster. For the research at hand these clusters can be
used to signal a change in the system’s behaviour from expected to unexpected.
Previous work of the authors of the paper at hand focussed on the suitability and
efficiency of the SOM investigations for forensic investigations (Fei et al. 2005).

4.1. The failure logs

Two types of logs were deemed relevant for this experiment: logs created by a
software application busy executing as well as logs generated by the operating
system. The following process was followed for obtaining the logs.

Logs generated by the application

A software failure whereby a C++ program would exhaust the memory of a flash
disk was used for this experiment. The C++ program was running on a Linux
machine and used a loop-structure that repetitively copies a video clip to a flash disk.
Since a large data set was required for the subsequent SOM analysis, the crash file
was chosen to maximise the number of records. This was done by running the
program with the largest flash disk (128 GB) and the smallest video file at hand (3.91
MB), which resulted in a maximum of 31 001 potential records in the crash file (128
GB/3.91 MB). The size of the program’s loop was set to be higher than 31 0001.
Every time a new copy of the video clip was made, various statistics about the C++
program, the Linux machine and the flash disk were written to a file, subsequently
referred to as the crash file. A total of 13 statistics were recorded, including the
duration of a file operation (i.e. copying of the video clip), the latency (i.e. time delay
between two file operations) and the associated memory statistics such as the amount
of RAM used (Mem Used) and the amount of RAM used for caching of data
(Cached). The latency and the duration were expressed in milliseconds (ms). Figure
2 shows a screenshot of the first entries in the crash file.

Proceedings of the Tenth International Symposium on
Human Aspects of Information Security & Assurance (HAISA 2016)

295

Figure 2: Screenshot of crash file

System logs

The C++ program was performing significant input (reading copy of video clip) and
output (copying video clip to new file) operations, it was therefore deemed most
appropriate to use the iotop monitoring utility to show input and output (I/O) usage
on the Linux disk. The iotop command continuously displays I/O statistics (9 in
total) such as disk-reading and disk-writing bandwidth (Linux.die.net. 2014). The I/O
statistics were used to corroborate the information in the crash file. Figure 3 shows a
screenshot of the iotop output file.

Figure 3: Screenshot of iotop output file

4.2. The SOM implementation tool

A commercial SOM tool, Viscovery SOMine (Viscovery.net, 2014), was used.

4.3. The test plan - analysis of the software failure

The root-cause analysis was conducted with a view to identifying near-miss
indicators. Identifying near-miss indicators was based on the assumption that it was
possible to see the failure emerging by monitoring the relevant attributes - such as
memory usage statistics - provided in both the crash file and the iotop output file.
Indeed, it was expected that the C++ program would have a stable operating mode
under normal conditions (when enough memory was available on the flash disk) and
that this normal behaviour would be disrupted when memory became insufficient.
Therefore the analysis was expected to reveal some unusual changes in the
monitored attributes close to the exhaustion of the flash disk free space.

4.3.1. Analysis of the crash file

The analysis of the crash file followed the scientific method as follows.

Formulate hypothesis - Ideally, one would conduct a root-cause analysis without any
biased opinion regarding the source of the failure. However, due to the nature of this

Proceedings of the Tenth International Symposium on
Human Aspects of Information Security & Assurance (HAISA 2016)

296

experiment, the source of the failure was already known (chosen) to be memory
exhaustion that results in performance degradation. Nonetheless, it is more important
to understand that the purpose of this demonstration is not only to identify a root
cause but rather to identify indicators that contribute to the root cause of a failure.

Predict evidence for the hypothesis - Indicators of performance degradation in the
execution of the C++ program were expected from the crash file. In addition, as
memory was depleting, it was expected that activity would be observed on the Linux
disk, aimed at managing a shortage in memory.

Test hypothesis with experiment - It was assumed that the above pattern in the
memory statistics would be visible from a pattern analysis of the behaviour of the
system (Linux machine) as the program was running. Profiling the system’s
behaviour was performed in three steps. Firstly, patterns in the overall end-to-end
behaviour were outlined. Then the focus shifted to the system’s behaviour close to
the point of failure, and finally a comparison between these two profiles was
performed.

Behaviour of the system before the failure

In order to observe patterns in the system’s behaviour, we created SOM maps for
several random sets of 1000 records throughout the crash file. Four sets of records
were selected: first 1000, 10 000 to 11 000, 20 000 to 21 000 and the last 1000
before the failure. In line with the expected evidence for memory exhaustion
mentioned earlier, the focus of the SOM analysis was on the following attributes in
the crash file: Creation Time, Buffers, Cached, Swap Used, Duration and Latency.
Therefore the SOM component maps were only generated for the attributes
mentioned above. A brief explanation of how to read the maps is provided next. The
component maps show the distribution of the values in the data set over time. The
scale of the values in the data set is displayed on a bar below each map. Values range
from lowest on the left to highest on the right of the bar. Values on the map are
differentiated by their colour on the scale. This means that lowest values are in dark
blue and highest values are in red. Clusters in the data set are delimited by black
lines on the maps. Each cluster groups records with close values for the various
attributes together. The maps for Latency are shown in Table 1 as an illustration. As
we used the trial version of the Viscovery SOMine tool for the SOM analysis, an
“Evaluation only” watermark appears on the maps.

Records 1-1000 Records 10 000 to
11 000

Records 20 000 to 21
000

Last 1000 records
before crash

Table 1: SOM maps for Latency

Proceedings of the Tenth International Symposium on
Human Aspects of Information Security & Assurance (HAISA 2016)

297

Results

A study of the component maps shows that the values for the various attributes listed
above remain fairly constant throughout the execution of the C++ program. For
instance, Duration remains around 1000 ms, with occasional big jumps throughout
the various data sets. However, one attribute that shows a distinctive change
throughout the program as well as close to the failure is Latency. Indeed, Latency
increases over time. As shown in Table 1, the minimal value goes from 13 ms to 20
ms and finally to 33 ms and the maximum value increases from 2031 ms to 3890 ms.
There are occasional big increases, but the biggest increase occurs in the last data set,
closer to the failure (3890 ms). In order to find more usable information about the
observed pattern in Latency, a more detailed SOM analysis for that attribute was
conducted. The analysis was performed with data sets close to the failure and is
described in the next section.

Behaviour of Latency close to the failure

A more detailed analysis of Latency was performed with the last 50 and the last 100
records before the failure. An examination of the resulting component maps confirmed
the previous observations with more specific evidence. The SOM maps showed that in
the last 100 records, Latency remains mostly around 40 ms, which is much higher than
the values of 13 ms to 20 ms in the first 21 000 records. The SOM maps also indicated
a lack of homogeneity in the records close to the point of failure. Indeed, the number of
clusters in the data of the last 50 records was considerably higher than the number of
clusters in the previous data sets. This indicates that these records are erratic in terms of
the other attributes used to train the maps, confirming the lack of correlation between
Latency and the other attributes.

Conclusion based on analysis of crash file

The conclusion reached from the above analysis of the crash file and of Latency was
that the system did indeed slow down towards the end of the C++ program’s execution.
This slowdown was due to a significant increase in Latency. The increase in Latency
was used as our first near-miss indicator. After establishing a near-miss indicator from
the crash file, the same analysis was conducted with the iotop output file.

4.3.2 Analysis of iotop output file

The analysis of the iotop output file followed the same process as with the crash
file. SOM maps for the same sets of 1000 records were generated for the following
attributes in the file: Time, Disk read (disk reading band-width), Disk write (disk
writing bandwidth), I/O and Command (process name). Significant changes were
observed in Disk read, Disk write, and Command and were used to identify near-
miss indicators, which are specified below.

 The number of running processes declines towards the point of failure.
 The values of Disk read are more than double the overall average.

Proceedings of the Tenth International Symposium on
Human Aspects of Information Security & Assurance (HAISA 2016)

298

 In the last few hundred records before the failure, the value of Disk write drops
to 0 at various instances.

4.4. Evaluation of experiment

Although the experiment was based on a failure with a simple software application
and did not demonstrate the full implementation of the near-miss detection method, it
was successful in the sense that it showed the benefit of this approach in terms of an
objective investigation of software failures. Indeed, out of the 13 initial attributes in
the crash file and the 9 attributes in the iotop output file, only 4 (latency,
processes, disk-reading bandwidth and disk-writing bandwidth) proved relevant for
near-miss detection and hence for the root-cause analysis. This is a significant
reduction in the volume of data to be analysed. Since the SOM algorithm is
optimised for large data sets, it is expected that the process followed to identify near-
miss indicators can scale to a real-life failure with a higher number of logs than was
used in the experiment.

It is worth noting that the identified near-miss indicators are system-level patterns
that would not be visible to the end-user otherwise. It is also important to notice that
these indicators are specific to the software failure at hand, the conditions of its
occurrence (lab experiment) and its analysis (iotop used for correlation to
program’s logs). However, they can be a starting point for the identification of near
misses for similar types of failures in the future once a near-miss formula has been
created. A deeper analysis of the collected evidence can potentially explain the
observed patterns (e.g. fluctuating number of processes) and find their root cause.
Ultimately a repository of near-miss indicators and formulas for various types of
failure could be obtained to facilitate their analysis.

The experiment discussed suffers some limitations that will be addressed in future
work. The experiment only implemented the near-miss detection process and the
analysis of a software failure, referred to as Phase 1 of the method in Fig 1. The
failure investigated for the experiment implementation was caused by a simple
program and had little impact. Simulating a major failure with significant impact
would have been costly and risky, hence the choice of a simplistic use case.

5. Conclusion

This paper proposed the use of near-miss analysis for the enablement of investigating
software failures. A method was proposed to detect near misses in software
applications through the identification of unusual patterns in the system behaviour
close to a likely failure. The viability of the method was demonstrated through an
experiment that applied the scientific method combined with the near-miss detection
method to identify relevant evidence of a software failure. Results of the experiment
are promising but need to be further validated through the creation of a near-miss
formula based on this method to determine whether near misses can be accurately
detected at runtime. A prioritisation mechanism to only collect data for the near

Proceedings of the Tenth International Symposium on
Human Aspects of Information Security & Assurance (HAISA 2016)

299

misses with the highest risk level might also be required to handle possible false
alarms.

6. References

BBC News. (2014), “RBS fined £56m over 'unacceptable' computer failure”,
http://www.bbc.com/news/business-30125728, (Accessed 18 December 2014)

Belles, R-J., Cletcher, J.W., Copinger, D.A., Dolan, B.W., Minarick, J.W., Muhlheim, M.D,
O'Reilly, P.D., Weerakkody, S. and Hamzehee, H. (2000), “Precursors to Potential Severe
Core Damage Accidents: 1998 – A Status Report”,
http://pbadupws.nrc.gov/docs/ML0037/ML003733843.pdf, (Accessed 02 April 2013)

Bernstein, M. (2009), “Scientific Method Applied to Forensic Science”,
http://marybernstein.wordpress.com/2009/05/27/scientific-method-applied-to-forensic-science,
(Accessed 18 December 2014)

Bihina Bella, M.A., Olivier, M.S. and Eloff, J.H.P. (2011), “Proposing a Digital Operational
Forensic Investigation Process”, Proceedings of the 6th International Workshop on Digital
Forensics and Incident Analysis, London, UK, 2011

Corby, M.J. (2011), “Forensics: Operational”, in McGhie, L. (Ed). Encyclopedia of
Information Assurance. Taylor & Francis, ISBN: 1-4200-6620-X.

Engelbrecht, A.P. (2007), Computational Intelligence: An Introduction, 2nd edition. John
Wiley & Sons, Ltd, ISBN: 978-0-470-03561-0.

Fei, B., Eloff, J., Venter, H., and Olivier, M. (2005), Exploring Forensic Data with Self-
Organizing Maps. Advances in Digital Forensics, Vol. 194, pp113-123. Springer.

Finnegan, M. (2013), “RBS apologises as customers hit by another IT outage”,
Computerworld UK, http://www.computerworlduk.com/news/ it-business/3491865/rbs-
apologises-as-customers-hit-by-another-it-outage, (Accessed 5 February 2013)

Hatton, L. (2004), “Forensic software engineering: An overview”,
http://www.leshatton.org/wp-content/uploads/2012/01/fse_Dec2004.pdf, (Accessed 5 May
2012).

ISO/IEC 27037. (2012), “Information technology — Security techniques — Guidelines for
identification, collection, acquisition, and preservation of digital evidence”,
http://www.iso.org/iso/catalogue_detail?csnumber=44381, (Accessed 8 April 2015)

Jones, S., Kirchsteiger, C. and Bjerke, W. (1999), “The importance of near miss reporting to
further improve safety performance”, Journal of Loss Prevention in the Process Industries,
Vol.12, pp59-67

Leveson, Nancy. (2015), “A systems approach to risk management through leading safety
indicators” Reliability Engineering and System Safety, Vol.136, pp17–34

Linux.die.net. (2014), “Iotop(1) – Linux man page”, http://linux.die.net/man/1/iotop
(Accessed 14 November 2014)

Proceedings of the Tenth International Symposium on
Human Aspects of Information Security & Assurance (HAISA 2016)

300

Meyer, B. (2011), “Again: The one sure way to advance software engineering”, ACM
communications blog, http://cacm.acm.org/blogs/blog-cacm/101891-again-the-one-sure-way-
to-advance-software-engineering/fulltext, (Accessed 17 February 2012)

Neebula.com. (2012). Success Factors for Root-Cause Analysis. [Online] Available from:
http://www.neebula.com [Accessed: 26 March 2013].

Pfleeger, C.P. and Pfleeger, S.L. (2007), Security in Computing, 4th edition, Pearson
Education, Inc, United States.

Phimister, J., Vicki, R., Bier, M. and Kunreuther, H.C. (2004), Accident Precursor Analysis
and Management: Reducing Technological Risk through Diligence, National Academies
Press, http://www.nap.edu/catalog/11061.html. (Accessed 15 May 2012)

Ritwik, U. (2002), “Risk-based approach to near miss”, Hydrocarbon Processing, pp93-96

Stephenson, P. (2003), “Formal Modeling of post-incident root cause analysis” International
Journal of Digital Evidence, Vol. 2, Issue 2

Viscovery.net (2014), “Viscovery SOMine 6 - Explorative data mining based on SOMs and
statistics”, http://www.viscovery.net/somine, (Accessed 5 November 2014)

