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Abstract 

Software failures often result in unavailability of systems causing disasters ranging from 
financial loss to loss of lives. Preventing their recurrence is therefore absolutely necessary. To 
this end, a post-mortem investigation of a software failure is usually conducted to identify its 
root cause.  However, these investigations most often lack efficiency and accuracy, as they are 
dependent on human expertise and level of knowledge of the system, and are therefore 
subjective in nature. Furthermore, investigating a software failure can be challenging due to 
the usually high volume of failure data - such as log entries - to be scrutinised. To address this 
problem, near-miss analysis is proposed. Near-miss analysis is an incident investigation 
technique that detects indicators of a likely failure before the failure unfolds. As these 
indicators – known as near misses – that are very close to the point of failure, they are most 
likely to point to its root cause. Near-miss analysis therefore offers an objective method to 
root-cause analysis based on the data collected from the near misses. The near-miss analysis 
method proposed in this paper is based on the pattern analysis of a software system’s 
behaviour close to a failure in order to identify near misses. The viability of the proposed 
method is demonstrated through an experiment. 
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1. Introduction 

Software failures disrupt the availability of a system, which results in data loss and 
data corruption and compromises the integrity of the related information. This often 
causes disasters ranging from financial loss to loss of lives. Preventing the recurrence 
of such major software failures is therefore crucial. Availability of software systems 
and information assets in general, together with confidentiality and integrity, forms 
the primary building blocks for safeguarding information and the related systems 
(Pfleeger & Pfleeger, 2007). Availability of software systems and in particular 
software failure analysis is of particular interest for the research at hand.   

Consider for example the unavailability of a banking system at the Royal Bank of 
Scotland (RBS), a major bank in the UK, in December 2013. Due to an unspecified 
technical glitch, the bank’s various electronic channels were unavailable for a day 
and customers were unable to transact (Finnegan, 2013). This failure was not the first 
experienced by RBS. In June 2012, another major outage occurred and left millions 
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of customers unable to access their bank accounts for four days, due to a failure in 
the batch-scheduling software at the bank. As a result, deposits were not reflected in 
bank accounts, payrolls were delayed, credit ratings downgraded and utility bills not 
paid. In November 2014, RBS was fined 56 million pounds by British regulators for 
the 2012 outage (BBC News, 2014). 

In cases like the above-mentioned a post-mortem investigation is usually required to 
identify their root cause. However, history shows that such an investigation is often 
conducted inefficiently and inaccurately, as it is dependent on human expertise and 
skills. Most often, investigators initially “diagnose” the software failures based on 
their own experience with the system and then do a number of troubleshooting 
attempts. Furthermore, there is no common procedure that an investigator can follow 
for investigating software failures in order to identify the root cause. This leads to a 
root cause investigation process that is based on human subjectivity. Other methods 
followed for failure analysis, although valuable, focus on performance improvement 
and not on preventing the recurrence of software failures; hence some manual 
guessing about the root cause of the failure is required (Neebula.com, 2012).   

Due to the prevalence of catastrophes such as the Royal Bank of Scotland example 
quoted above, various studies (Stephenson, 2003; Hatton, 2004; Corby, 2011; Meyer, 
2011) have focused on improving the usual ad-hoc approach to root-cause analysis. 
Most often adding structure and formal modelling to the investigation process does 
this. The research at hand rather focuses on the enablement of investigators to make 
the root cause investigation process more objective as well as to generate scientific 
evidence. This is accomplished through introducing near-miss analysis as a 
technique for investigating software failures (Bihina Bella et al. 2011).  

Near-miss analysis is a technique used in the domain of risk analysis and safety for 
the prevention and investigation of accidents. Near-miss analysis refers to the 
detection and causal analysis of near misses. By definition, a near miss is a high-risk 
event that could have led to an accident, but did not due to some timely intervention 
or by chance (Jones et al. 1999). Almost all major accidents are preceded by a 
number of near misses (Phimister et al. 2004). Near misses are therefore warning 
signs or indicators of an upcoming failure. However, contrary to other indicators 
preceding the failure, a near miss is the closest to the point of failure; in other words, 
it is the closest to the time window during which the failure occurs. This concept can 
be better explained with an example. 

Consider for instance a potential car collision at a busy intersection. This potential 
accident could have been preceded by the following sequence of events: (1) a driver 
crossing a red traffic light, (2) the driver over speeding, and (3) the driver struggling 
to slow down when noticing an incoming car. In the above scenario, the last high-
risk event, Event (3), is the near-miss event as it is the closest to the potential crash. 
The fact that the collision was avoided, maybe due to the carefulness of the driver of 
the incoming car, makes this sequence of events a near miss. 
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As near misses point to the possibly last indicator of an impending failure, they 
provide a fairly complete set of data about that failure. In the case of a software 
application, this data is likely to contain behavioural patterns close to the point of 
failure that can hint at its root cause. The evidence collection effort can therefore be 
limited to data about these patterns, eliminating the collection of less relevant data. 

Common causes of software failures include resource exhaustion and logic errors. 
Resource exhaustion such as running out of available memory is taken as a use case 
for the research at hand. Consider for example a software system developed in C++ 
that does not give adequate warning should external memory become unavailable. 
This type of software failure can only be located through investigating output 
provided by the system executing. This output is most often in the form of failures 
logs and can be generated by either the operating system or the application itself. It is 
for this reason that the paper at hand demonstrates the application of near-miss 
analysis for investigating and preventing software failures by means of failure log 
analysis. This near-miss analysis is based on the pattern analysis of software failures.  

The remainder of this paper is organised as follows. Section 2 reviews previous work 
on near-miss analysis to assess its suitability for software failure analysis. Section 3 
presents our proposed near-miss analysis method. Finally, Section 4 presents an 
experiment to demonstrate the viability of the proposed method. 

2. Previous work on near-miss detection 

The detection of near misses usually involves assessing the risk level of an observed 
unsafe event or calculating the likelihood that this event can lead to a failure. 
Examples of such events include the degradation of plant conditions and the failures 
of safety equipment (Belles et al. 2000). A common technique proposed for this 
purpose is Bayesian statistics (Belles et al. 2000) to calculate the conditional 
probability of an accident given the occurrence of the risky event. Probabilistic risk 
analysis (PRA) is also a recurring suggestion. PRA consists of estimating the risk of 
failure of a complex system by breaking it down into its various components and 
determining potential failure sequences (Phimister et al. 2004). Some research has 
also been conducted to find generic metrics or signs of an upcoming accident, such 
as equipment failure rates (Leveson, 2015). 

Some qualitative approaches to near-miss detection have also been proposed. For 
instance, in some organizations, the detection of near misses is simply based on a 
listing of potential hazards such as a toxic chemical leak or an improperly closed 
switchbox (Ritwik, 2002). These examples are often obtained from incident reporting 
systems. Another technique also used is the Delphi method. The Delphi method is a 
group decision-making tool that can be used to obtain information on the probability 
of an accident from a panel of experts (Pimister et al. 2004). 

In all the above techniques, near misses are usually identified as those events that 
exceed a predefined level of severity. This limits their application to software 
failures. Indeed, a high threshold may overlook significant events that were not 
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anticipated, especially in new or immature software systems, while a low threshold 
will likely result in many false alarms. Besides, generic metrics of near misses might 
not be applicable to all types of systems and all types of failures. Another major 
limitation of the above techniques is the fact that they rely on the observation of 
physical events or conditions. However, in the case of software failures, some near 
misses might not be visible at all, as no failure actually occurred. A more flexible 
method to detect near misses is required in the case of software failures. The method 
proposed in this paper is described in the next section.  

3. Proposed near-miss method for software failure analysis 

The purpose of the near miss analysis method discussed in this section is twofold: 
Firstly, it demonstrates how to collect relevant information about an unfolding 
software failure.  Secondly, it shows how to use the collected information for 
constructing near miss indicators that can play a role for the prevention of similar 
software failures in the future. This is illustrated in Figure 1. 
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Figure 1: High-level flowchart of proposed near-miss method 

The first phase is conducted after the occurrence of a new failure, from the analysis 
of the failure logs. The logs are analysed to compare the expected system’s 
behaviour to the behaviour close to the failure in order to identify some “warning 
signs” of the failure. The expected behaviour is derived from the end-to-end pattern 
analysis of the system’s transactions. The goal of this phase is the creation of a near-
miss formula that defines near misses for the failure at hand. The near-miss formula 
combines all the identified warning signs of the failure, which we refer to as “near-
miss indicators”. The formula is a mathematical expression of the interdependencies 
between the near-miss indicators. These indicators signal a significant deviation from 
the operational expectation of a monitored system. The near-miss formula will 
obviously be specific to the failure and system at hand, but the process to create the 
formula can be applied to any system or failure type. 

The second phase is the detection of near misses at runtime before the reoccurrence 
of a similar failure. The near-miss formula is applied to the logs of the monitored 
system as they are generated so that potential near misses can be detected prior to a 
failure. When some log entry matches the formula, an alert is raised and data relating 
to the near-miss indicators is collected for the suspicious log. This data is then used 
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as evidence for the ensuing root-cause analysis if the failure unfolds. This near-miss 
detection method identifies the information relevant to the root-cause analysis and it 
indicates when to collect this information. 

4. Application of the near-miss detection method  

This section demonstrates the application of the near-miss detection method through 
an experiment. The experiment shows the analysis of a software failure with a view 
to identifying near-miss indicators, so it is limited to the first phase of the method. 
The demonstration follows a scientific method: formulating a hypothesis, predicting 
evidence for the hypothesis, and testing the hypothesis with an experiment 
(Bernstein, 2009). Furthermore, it employs SOM (Self-Organizing-Maps) 
(Engelbrecht, 2007) data analysis technique to analyse the logs of the failure.  

The reason for using SOM is that it enables pattern identification in big data sets. 
Patterns in a system’s behaviour can be used to signal an unfolding systems’ crash. 
Furthermore SOM is an unsupervised learning technique, which is useful seeing that 
the causes for a system crash are unknown before the crash occurs. Unsupervised 
learning classifies input data, represented as vectors, based on similarity. Similar 
vectors are grouped in the same cluster. For the research at hand these clusters can be 
used to signal a change in the system’s behaviour from expected to unexpected.  
Previous work of the authors of the paper at hand focussed on the suitability and 
efficiency of the SOM investigations for forensic investigations (Fei et al. 2005).  

4.1. The failure logs 

Two types of logs were deemed relevant for this experiment: logs created by a 
software application busy executing as well as logs generated by the operating 
system. The following process was followed for obtaining the logs.  

Logs generated by the application  

A software failure whereby a C++ program would exhaust the memory of a flash 
disk was used for this experiment. The C++ program was running on a Linux 
machine and used a loop-structure that repetitively copies a video clip to a flash disk. 
Since a large data set was required for the subsequent SOM analysis, the crash file 
was chosen to maximise the number of records. This was done by running the 
program with the largest flash disk (128 GB) and the smallest video file at hand (3.91 
MB), which resulted in a maximum of 31 001 potential records in the crash file (128 
GB/3.91 MB). The size of the program’s loop was set to be higher than 31 0001.  
Every time a new copy of the video clip was made, various statistics about the C++ 
program, the Linux machine and the flash disk were written to a file, subsequently 
referred to as the crash file. A total of 13 statistics were recorded, including the 
duration of a file operation (i.e. copying of the video clip), the latency (i.e. time delay 
between two file operations) and the associated memory statistics such as the amount 
of RAM used (Mem Used) and the amount of RAM used for caching of data 
(Cached). The latency and the duration were expressed in milliseconds (ms). Figure 
2 shows a screenshot of the first entries in the crash file. 
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Figure 2: Screenshot of crash file 

System logs 

The C++ program was performing significant input (reading copy of video clip) and 
output (copying video clip to new file) operations, it was therefore deemed most 
appropriate to use the iotop monitoring utility to show input and output (I/O) usage 
on the Linux disk. The iotop command continuously displays I/O statistics (9 in 
total) such as disk-reading and disk-writing bandwidth (Linux.die.net. 2014). The I/O 
statistics were used to corroborate the information in the crash file. Figure 3 shows a 
screenshot of the iotop output file. 

 

Figure 3: Screenshot of iotop output file 

4.2. The SOM implementation tool  

A commercial SOM tool, Viscovery SOMine (Viscovery.net, 2014), was used.  

4.3. The test plan - analysis of the software failure  

The root-cause analysis was conducted with a view to identifying near-miss 
indicators. Identifying near-miss indicators was based on the assumption that it was 
possible to see the failure emerging by monitoring the relevant attributes - such as 
memory usage statistics - provided in both the crash file and the iotop output file. 
Indeed, it was expected that the C++ program would have a stable operating mode 
under normal conditions (when enough memory was available on the flash disk) and 
that this normal behaviour would be disrupted when memory became insufficient. 
Therefore the analysis was expected to reveal some unusual changes in the 
monitored attributes close to the exhaustion of the flash disk free space. 

4.3.1. Analysis of the crash file  

The analysis of the crash file followed the scientific method as follows.  

Formulate hypothesis - Ideally, one would conduct a root-cause analysis without any 
biased opinion regarding the source of the failure. However, due to the nature of this 
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experiment, the source of the failure was already known (chosen) to be memory 
exhaustion that results in performance degradation. Nonetheless, it is more important 
to understand that the purpose of this demonstration is not only to identify a root 
cause but rather to identify indicators that contribute to the root cause of a failure.  

Predict evidence for the hypothesis - Indicators of performance degradation in the 
execution of the C++ program were expected from the crash file. In addition, as 
memory was depleting, it was expected that activity would be observed on the Linux 
disk, aimed at managing a shortage in memory.  

Test hypothesis with experiment - It was assumed that the above pattern in the 
memory statistics would be visible from a pattern analysis of the behaviour of the 
system (Linux machine) as the program was running. Profiling the system’s 
behaviour was performed in three steps. Firstly, patterns in the overall end-to-end 
behaviour were outlined. Then the focus shifted to the system’s behaviour close to 
the point of failure, and finally a comparison between these two profiles was 
performed. 

Behaviour of the system before the failure 

In order to observe patterns in the system’s behaviour, we created SOM maps for 
several random sets of 1000 records throughout the crash file. Four sets of records 
were selected: first 1000, 10 000 to 11 000, 20 000 to 21 000 and the last 1000 
before the failure. In line with the expected evidence for memory exhaustion 
mentioned earlier, the focus of the SOM analysis was on the following attributes in 
the crash file: Creation Time, Buffers, Cached, Swap Used, Duration and Latency. 
Therefore the SOM component maps were only generated for the attributes 
mentioned above. A brief explanation of how to read the maps is provided next. The 
component maps show the distribution of the values in the data set over time. The 
scale of the values in the data set is displayed on a bar below each map. Values range 
from lowest on the left to highest on the right of the bar. Values on the map are 
differentiated by their colour on the scale. This means that lowest values are in dark 
blue and highest values are in red. Clusters in the data set are delimited by black 
lines on the maps. Each cluster groups records with close values for the various 
attributes together. The maps for Latency are shown in Table 1 as an illustration. As 
we used the trial version of the Viscovery SOMine tool for the SOM analysis, an 
“Evaluation only” watermark appears on the maps.  

Records 1-1000 Records 10 000  to 
11 000 

Records 20 000 to 21 
000 

Last 1000 records 
before crash 

    

Table 1: SOM maps for Latency 
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Results  

A study of the component maps shows that the values for the various attributes listed 
above remain fairly constant throughout the execution of the C++ program. For 
instance, Duration remains around 1000 ms, with occasional big jumps throughout 
the various data sets. However, one attribute that shows a distinctive change 
throughout the program as well as close to the failure is Latency. Indeed, Latency 
increases over time. As shown in Table 1, the minimal value goes from 13 ms to 20 
ms and finally to 33 ms and the maximum value increases from 2031 ms to 3890 ms. 
There are occasional big increases, but the biggest increase occurs in the last data set, 
closer to the failure (3890 ms). In order to find more usable information about the 
observed pattern in Latency, a more detailed SOM analysis for that attribute was 
conducted. The analysis was performed with data sets close to the failure and is 
described in the next section. 

Behaviour of Latency close to the failure 

A more detailed analysis of Latency was performed with the last 50 and the last 100 
records before the failure. An examination of the resulting component maps confirmed 
the previous observations with more specific evidence.  The SOM maps showed that in 
the last 100 records, Latency remains mostly around 40 ms, which is much higher than 
the values of 13 ms to 20 ms in the first 21 000 records. The SOM maps also indicated 
a lack of homogeneity in the records close to the point of failure. Indeed, the number of 
clusters in the data of the last 50 records was considerably higher than the number of 
clusters in the previous data sets. This indicates that these records are erratic in terms of 
the other attributes used to train the maps, confirming the lack of correlation between 
Latency and the other attributes.  

Conclusion based on analysis of crash file  

The conclusion reached from the above analysis of the crash file and of Latency was 
that the system did indeed slow down towards the end of the C++ program’s execution. 
This slowdown was due to a significant increase in Latency. The increase in Latency 
was used as our first near-miss indicator. After establishing a near-miss indicator from 
the crash file, the same analysis was conducted with the iotop output file.  

4.3.2 Analysis of iotop output file  

The analysis of the iotop output file followed the same process as with the crash 
file. SOM maps for the same sets of 1000 records were generated for the following 
attributes in the file: Time, Disk read (disk reading band-width), Disk write (disk 
writing bandwidth), I/O and Command (process name). Significant changes were 
observed in Disk read, Disk write, and Command and were used to identify near-
miss indicators, which are specified below.  

 The number of running processes declines towards the point of failure.  
 The values of Disk read are more than double the overall average.  
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 In the last few hundred records before the failure, the value of Disk write drops 
to 0 at various instances.  
 

4.4. Evaluation of experiment 

Although the experiment was based on a failure with a simple software application 
and did not demonstrate the full implementation of the near-miss detection method, it 
was successful in the sense that it showed the benefit of this approach in terms of an 
objective investigation of software failures. Indeed, out of the 13 initial attributes in 
the crash file and the 9 attributes in the iotop output file, only 4 (latency, 
processes, disk-reading bandwidth and disk-writing bandwidth) proved relevant for 
near-miss detection and hence for the root-cause analysis. This is a significant 
reduction in the volume of data to be analysed. Since the SOM algorithm is 
optimised for large data sets, it is expected that the process followed to identify near-
miss indicators can scale to a real-life failure with a higher number of logs than was 
used in the experiment. 

It is worth noting that the identified near-miss indicators are system-level patterns 
that would not be visible to the end-user otherwise. It is also important to notice that 
these indicators are specific to the software failure at hand, the conditions of its 
occurrence (lab experiment) and its analysis (iotop used for correlation to 
program’s logs). However, they can be a starting point for the identification of near 
misses for similar types of failures in the future once a near-miss formula has been 
created. A deeper analysis of the collected evidence can potentially explain the 
observed patterns (e.g. fluctuating number of processes) and find their root cause. 
Ultimately a repository of near-miss indicators and formulas for various types of 
failure could be obtained to facilitate their analysis. 

The experiment discussed suffers some limitations that will be addressed in future 
work. The experiment only implemented the near-miss detection process and the 
analysis of a software failure, referred to as Phase 1 of the method in Fig 1. The 
failure investigated for the experiment implementation was caused by a simple 
program and had little impact. Simulating a major failure with significant impact 
would have been costly and risky, hence the choice of a simplistic use case.  

5. Conclusion 

This paper proposed the use of near-miss analysis for the enablement of investigating 
software failures. A method was proposed to detect near misses in software 
applications through the identification of unusual patterns in the system behaviour 
close to a likely failure. The viability of the method was demonstrated through an 
experiment that applied the scientific method combined with the near-miss detection 
method to identify relevant evidence of a software failure. Results of the experiment 
are promising but need to be further validated through the creation of a near-miss 
formula based on this method to determine whether near misses can be accurately 
detected at runtime. A prioritisation mechanism to only collect data for the near 
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misses with the highest risk level might also be required to handle possible false 
alarms. 
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