
Chapter 1 – INC Papers

81

Connected In-Car Multimedia: Qualities Affecting
Composability of Dynamic Functionality

A.Knirsch1,2, J.Wietzke2, R.Moore2 and P.S.Dowland1

1Centre for Security, Communications and Network Research,

Plymouth University, Plymouth, United Kingdom

2ICM Labs, Faculty of Computer Science,
University of Applied Sciences Darmstadt, Darmstadt, Germany

e-mail: andreas.knirsch@h-da.de

Abstract

In-Car Multimedia systems have become a fundamental part of a car’s human-machine
interface. Recent developments within the domain of mobile consumer electronics create
demands for flexible functionality by use of after-market applications, also within the
automotive sector. Further, current systems already provide connectivity to enable dynamic
data using cellular access networks. Future systems will provide comparable features not only
for data, but also for functionality. The capabilities for modification or enhancement of
functionality using network connectivity requires a thorough consideration of certain software
qualities, also with respect to operation within a safety critical environment and provisioning
of an adequate user experience. This paper characterises relevant software qualities with a
strong focus on composability. The objective is to provide a base for building a modular
system that appears as a homogenous whole, while providing sufficient dependability. An
architecture is proposed to illustrate the applicability of those qualities to a particular software
system.

Keywords

Embedded systems, automotive software engineering, infotainment, composability

1. Introduction

In recent years the significance of automotive information and entertainment (aka.
infotainment) systems has grown rapidly. They represent the central information
interface between the car and its occupants and already affect a prospective
customer’s purchase decision. They combine an increasing number of software-
based functionalities of different importance and purpose, developed independently
by multiple suppliers and integrated onto a shared hardware (HW) platform (aka. the
‘head-unit’). The aim is to provide guidance and assistance, while enabling the driver
to configure and control automotive functions and offer a rich variety of
entertainment functionalities. This evolution has led to large-scale complex software
systems of >20 million lines of code (MLOC), decomposed into software
components to tackle the complexity and integrated into the head-unit to achieve cost
efficiency in production. The head-unit features various interfaces to other systems
and the occupants of the car, and their mobile or storage devices. Figure 1 depicts
some common components and interfaces of next generation systems.

Proceedings of the Tenth International Network Conference (INC2014)

82

Figure 1: Exemplary components and interfaces.

Whereas the scope of past systems were limited to In-Vehicle Infotainment (IVI),
current developments led to systems where the distinction of safety critical software
functionalities, like e.g. the instrument cluster, becomes blurred due to integration.
The instrument cluster provides functionality (e.g. indicators for gear, exterior light,
speed control) that is classified safety critical using level ASIL B (Automotive Safety
Integrity Level) following ISO 26262 “Road vehicles – Functional safety”. Currently
there are already systems available that display IVI content within a fully digital
instrument cluster. Those systems are realised using several distinct platforms (aka.
electronic control units (ECU)) interconnected by in-vehicle bus systems (e.g. CAN,
MOST) and direct links to achieve an efficient video transport (e.g. LVDS).

It is the intention of the car manufacturers to reduce the number of ECUs, while
utilizing available multi-core HW architectures (Monot et al., 2012). A decreasing
number of dedicated HW units increase the integration density at the software level
for a single HW platform while using a multi-source code base. In result the head-
unit evolves into a mixed critical system (MCS), combining distinct levels of
assurance against failure (Burns and Davis, 2013). Nevertheless, safety critical and
non-safety critical functions may be still separated at the software level to prevent
unwanted mutual interference. The objective is to maintain the necessary reliability
of vehicular software, with a failure rate of about one part per million in a year
(Mössinger, 2010).

Future IVI is anticipated to go beyond just information and entertainment due to the
fusion with other existing and upcoming functionality to build an integral UI for the
occupants. In the following the broader term In-Car Multimedia (ICM) is used to
differentiate from IVI. Despite this heterogeneity at the software (SW) level, the user
interface has to provide all functionality in a comprehensive and uniform way,
blended into the car-manufacturer’s usage concept. To achieve an adequate and
purpose-oriented user experience (UX), both the allocation and the presentation of
the content has to respect the car’s operating state, the user’s preferences, and
interaction with the system, while considering a multi-display environment.
Additionally, the software system has to meet specific temporal requirements while
being deployed to a resource constrained embedded HW platform. Moreover, the
system contains safety critical components and is operating within a safety relevant
environment and therefore has to provide sufficient dependability, or more simply: it
must work as intended.

CANMOST GPS

phone

SD flash

USB flash

LTE

3G

WiFi

bluetooth

navigation

media player

social media

displaytouch instruments

user interface

internet browser

phone

instrument cluster

email

fm tuner

...

speech

user interaction

vehicular fieldbus and sensors

co
n

ne
ct

iv
ity

st
o

ra
ge

 m
ed

ia

Chapter 1 – INC Papers

83

The impact of these challenges is amplified by the demands and needs for dynamic
content and functionality, available through wireless access networks (i.e. 3G, LTE).
This enables ICM systems to dynamically update both data (e.g. geographical maps,
traffic information) and functionality (e.g. ‘apps’) as provided for consumer
electronics (CE) using ‘app-stores/-markets’. Mössinger (2010) formulates this as
follows:

“The next software revolution in vehicles is imminent as multimedia and
consumer electronics enter the automotive world. Vehicles will be connected
to the Internet and to all kinds of nomadic and home-based devices as new
sources for automotive software, such as open source, emerge.”

Such SW deployment provides new opportunities for after-market solutions and
maintenance, to reflect the relatively long product life cycle of automotive systems in
comparison to CE. This also implies a new dimension of customisation by providing
the ‘user’ freedom to choose what to integrate on the system. The consequence is an
increased independency from and between suppliers of SW functionality. This raises
additional issues regarding composability and the integration onto a common HW
platform while maintaining a deterministic predefined temporal behaviour (i.e.
dynamic aspects), to reflect the different degrees of importance of the integrated SW
components.

In the following, we name and analyse relevant qualities and their relationships that
have impact on the composability of dependable modular systems - using ICM
systems connected to infrastructure-based wireless access networks as an illustrative
example. Further, we match those qualities to a SW architecture for demonstrating
the applicability onto practical systems.

2. Related Work

Burns and Davis (2013) provide a comprehensive review on MCS. They classify the
prevention of interference between tasks from different components as primary
concern with the implementation of MCS. Further, they name AUTOSAR as
software standard of the European automotive industry for addressing mixed
criticality issues. As foundation to standardisation they address research questions on
how to reconcile the conflicting requirements of partitioning for assurance and
sharing for efficient resource usage as fundamental:

“[…] how, in a disciplined way, to reconcile the conflicting requirements of
partitioning for (safety) assurance and sharing for efficient resource usage.”

AUTOSAR provides mature means for partitioning and hence prevention of
interference between different components (Mössinger, 2010). Hence it supports the
shift from the “one function per ECU” paradigm to more centralized architecture
designs (Monot et al., 2012). But it is rather static and does not provide the necessary
capabilities to integrate software components (i.e. dynamic content) originated from
the CE domain. However, an AUTOSAR operating system (OS) may complement a
system architecture to contain safety critical components, which is hosting multiple

Proceedings of the Tenth International Network Conference (INC2014)

84

parallel containers with less critical software to support the demands for dynamic
data and functionality.

Chung and do Prado Leite (2009) provide a comprehensive overview on the
treatment of non-functional requirements (NFR). They claim the concept of quality is
fundamental to software engineering. Both functional and non-functional
characteristics must be taken into consideration during development, because
functionality is not useful or usable without provisioning the necessary non-
functional characteristics or quality attributes. They provide definitions to clarify
terms related to NFR, describe differences to non-SW systems, and reason about the
lop-sided emphasis in functionality:

“However, partly due to the short history behind software engineering, partly
due to the demand on quickly having running systems fulfilling the basic
necessity, and also partly due to the 'soft' nature of non-functional things,
most of the attention […] has been centred on notations and techniques for
defining and providing the functions […].”

Attiogbé et al. (2006) propose the verification of composability using a formal
model. They define such a model based on components’ characteristics. In detail
those are an identifier, a state, and an interface made of services that realise the
interaction with the environment (i.e. other components). They define composability
by considering the links between the components’ services and their behavioural
compatibility. The focus is basically limited on the system’s functionality. Although
the interface may contain details on characteristics, they omit an explicit modelling
of NFRs.

Component-based software engineering (CBSE) has been a research area for many
years. Hence, there are already a number component models with different aims and
targeted for different domains available. A component model essentially consists of
rules defining the construction of the components and their assembly. Crnković et al.
(2011) provides a comprehensive overview on many of those and proposes a
classification framework to support differentiation based on different dimensions to
factor in the different aspects of the development process using an expressive formal
model. They specify a component by a set of ‘component properties’, which covers
both functional and non-functional properties (referred to as ‘extra-functional
properties’ (EFP)): a component consists of a functional interface providing or using
services, and a set of non-functional properties. Bindings define the connections
between interfaces, whereas bindings are distinguished into connections between
components and platform (i.e. those which enable component integration by use of
an adequate abstraction layer) and into connections between components (i.e. those
which enable component interaction by use of interoperable functional interfaces).
Further, they provide information on specification, management, and composition of
NFRs. Those ideas and their terminology are adopted for the concepts provided
below.

Chapter 1 – INC Papers

85

3. Software Qualities related to Composable Systems

Modular systems are rendered by use of more or less distinct and heterogeneous
components. To form an integrated whole those components have to be composable.
This feature is expressed by the quality ‘composability’, which has to be reflected by
the system’s requirements to define targeted characteristics. The requirements also
have to consider other non-functional qualities, referred to as non-functional
requirements (NFR). While functional requirements reflect the purpose of the SW
system (Chung and do Prado Leite, 2009), NFRs express the SW system’s
characteristics and attributes to make it useful and usable under stated conditions.

Figure 2: Qualities related to composability.

3.1. Composability

Composability is a complex quality. To make this term more tangible and also
support the classification of whether a system meets a certain degree of
composability, it is decomposed into the most significant and related qualities and
characteristics, which are detailed in the following sections. Unfortunately, most
classification schemes for NFRs are inconsistent with each other (Chung and
do Prado Leite, 2009) and do not sufficiently recognize potential interactions
between requirements. Hence, in the following sections the focus is kept on
composability.

3.2. Compatibility and Interoperability

Composability mainly depends on compatibility and interoperability. Following the
definition of Neumann (2004), compatibility implies the possible coexistence of
different components (or entities) without adverse side effects. Interoperability
addresses the ability of those different components to work constructively with one
another. Both compatibility and interoperability are constructive aspects of SW
engineering and therefore have to be considered already during the system design
phase. This also implies that a system that lacks compatibility and/or interoperability
might not be able to be refactored for improvement of those qualities without
significant efforts. This statement is also supported by Chung and do Prado Leite
(2009), who propose that NFRs play a critical role for architectural design.

re
q

u
ir

em
en

ts

functional

non-functional

composability

compatibility interoperability

must not affect

has direct
impact on

dependability

has to consider

scalability

has positive
effect on

performance
security
reliability

fault tolerance
survivability

...

Proceedings of the Tenth International Network Conference (INC2014)

86

3.3. Scalability

Further, composability and its derived qualities compatibility and interoperability
have an effect on the scalability of a modular system. This is mainly related to the
extendibility regarding the number of composed components. Also the reusability of
the system’s components increases with improved composability and therefore may
have positive effects on the efficiency of the development process due to the possible
reuse of already existing or legacy components.

3.4. Dependability

With regards to the operation within a safety relevant environment and containing
safety critical functionality, the ICM system’s dependability takes on a special role,
which has to be considered throughout system development, maintenance and
deployment of dynamic functionality. This includes, but is not limited to, the
system’s security, reliability, fault tolerance, survivability and performance.

4. Applied Development of ICM Systems

Based upon the information gathered through involvement in several multi-national
development projects of ICM systems at different Original Equipment Manufacturers
(OEMs), it can be observed that the industry does not apply a comprehensive
approach to achieving composable systems. The system qualities and characteristics
described above are not addressed adequately (if they are addressed at all) during the
constructive design and development phase. In reality, the composing of components
is mainly seen from a functional viewpoint, covering the components’ interfaces with
respect to the functional interdependencies. This is necessary but not sufficient to
achieve composable systems. The following section describes some of the most
critical issues that have been observed.

4.1. Temporal Behaviour

During the operation of the system the computational requirements and hence the
computational load varies for different components, depending on the current system
state, user interaction, or external events (i.e. triggered by automotive systems and
sensors or through network communication). This may result in high-load (or peak-
load) situations, where the system behaviour is not defined due to shared use of both
computational and non-computational resources (e.g. input/output devices). Further,
the system behaviour is difficult to test, due to various potential permutations of load
distributions regarding the actual state of the components and depending on the
actual integrated components. The latter gains significance for dynamic functionality
(i.e. on user request), because neither the constellation of integrated components nor
their potential mutual interferences are foreseeable. This may result in sporadic
temporal interferences between components, violating the components’
compatibility. Components that dynamically adjust the priorities of their executing
threads and hence bias the scheduling without knowledge of other components’
current state or their importance related to their semantics with a view on the overall
system amplify such effects. Even more adverse is the circumstance that usually
temporal behaviour isn’t defined on the granularity of components. Latency

Chapter 1 – INC Papers

87

requirements and performance characteristics serve as examples here. Hence, a
violation of the required temporal behaviour often does not appear before integration
of all components. With dynamic functionality for connected head-units this can
cause unpredictable behaviour during the product-lifecycle, affecting the
compatibility.

4.2. Memory Footprint

Similar to the computational resources, the platform’s memory capabilities are also
limited whereas the actual demands vary during system operation. While the
footprint of a component can be estimated based on static analysis of the source code
(if available), it is unlikely that the platform will provide as much memory as the
overall system may theoretically demand. For dynamic functionality it is impossible
to anticipate how much memory the platform has to provide to the components. The
available memory may not be sufficient to cover all functionalities. A solution is
provided by use of over-commit (aka. over-booking) (Urgaonkar et al., 2002) which
also affects deterministic temporal behaviour and hence the component’s
compatibility.

4.3. User Interface

The automotive user interface (UI) provides multiple input and output facilities to
enable a multi-modal interaction with various software components in parallel use.
Many of those provide a graphical front end using the car’s multi-display
environment and concurrently utilise available graphical processing units (GPU) for
HW acceleration. Due to a lack of the availability of multi-GPU platforms, this
implies a bottleneck with potential adverse temporal effects for parallel computed
components that rely on graphical output. Furthermore, as each of the components
provide only a portion of the graphical user interface (GUI), the independent
artefacts need to be blended to provide the car’s occupants a consistent and uniform
look and usage concept. The compositing of UI artefacts is related to both the
components’ compatibility and interoperability. A valid solution may be to
implement the whole UI within a distinct component that relies on distinct
“functional” components (this is basically the current approach). However, such an
approach inhibits the modification and extension of those “functional” components
without adaptation of the UI component. Hence this centralised UI approach is not
applicable for dynamic functionality.

4.4. Tools and Techniques

Unfortunately, based on the experience gathered in industry projects, the applied
business project management tools or techniques do not provide significant
assistance. They may help to mitigate effects by adding transparency and traceability
to the development process but also obfuscate the root cause: Insufficient addressing
of composability throughout the constructive phases of the system development. This
also applies to use of coding standards. Although they may help to improve
maintainability and reliability by defining how the code must be structured and
which language features should and should not be used, and hence represent an
important building block for complex systems, composability lies beyond such non-

Proceedings of the Tenth International Network Conference (INC2014)

88

software-architectural implementation rules. Nevertheless, coding standards can be
used for automated checking of the components’ sources statically for compliance
with clear results to support the reliability of the system under development
(Holzman, 2013), positively affecting the system’s dependability.

The increasing system complexity and the heterogeneous functionality makes the
consideration of composability throughout the system development overdue. This
gets even more emphasised with the perspective on integration of dynamic
functionality while considering an adequate degree of dependability.

5. Proposed Architectural Features

Based upon the problems detailed above, several suggestions can be made to aim for
the goal of a more deterministic component integration and prevention of adverse
component interactions. The intention is to assemble building blocks that bridge the
gap between the conceptual approaches to an applicable solution (or at least
significant improvements) for ICM systems that integrate dynamic functionality.
However, a single building block may improve the system but also introduce some
drawbacks. Hence it is recommended to utilise all suggestions in combination to
both: benefit from the improvements while mitigating individual negative effects.
The following proposed architectural features were evaluated using a prototype
implementation, based upon OpenICM (Knirsch et al., 2012a).

5.1. Component Containment (CON)

Following the classification of Crnković et al. (2011) an exogenous management of
extra-functional properties (i.e. NFRs) using containers to encapsulate the
components is suggested. While the components concentrate on functional aspects,
the containers take care of the NFRs by preventing unwanted interference. This
obviates any modification to the components for system integration and effectively
implements a separation of concerns. The functional binding between the
components is independent of the management of the NFRs. This corresponds to the
concept of execution domains (ED), whereas such containers for managing temporal
NFRs are implemented using CPU affinity techniques in multi-core environments,
virtualisation techniques, or both in combination (Vergata et al., 2011). For a stricter
encapsulation Schnarz et al. (2014) describe an asymmetric multiprocessing (AMP)
approach in combination with a multi-OS environment. Whereas EDs provide
containment within a given OS, approaches based upon a multi-OS environment
support containment using an OS domain (OSD), and vOSD for virtualisation
respectively. Containment domain (CD) is used as generic term for ED, OSD and
vOSD. Figure 3 illustrates containment using distinct CDs, whereas the execution
platform depends on the actual implementation of the CD (i.e. ED, OSD, or vOSD).

Figure 3: Using CDs for component containment.

Chapter 1 – INC Papers

89

An assembly of components sharing a single CD is refereed to as ‘composite
component’. Although the NFRs of a composite component are derived from the
individual components, the characteristics of the composition are not. The
composition is a set of components that interact together and hence also interfere
with each other affecting compatibility. The possibly resulting adverse behaviour
depends e.g. on the current system state, user interaction, component interaction and
system load. This leads to a non-deterministic behaviour that may violate super-
ordinated NFRs, and potentially affect functional requirements. However, clustering
components based on certain characteristics (i.e. similarities) like criticalness,
component provider, or semantics may provide adequate means to limit the
propagation of adverse interaction. Such containment for dynamic functionality
introduced after-market can be realised by use of a CD.

Figure 4 illustrates an exemplary ICM design using different types of CDs. Those are
arranged hierarchically to demonstrate the flexibility in assembling mixed
approaches for component containment. This means a particular CD may contain one
or more other CDs. The depicted system consists of three distinct OSDs for very
strict isolation, relying on an AMP based approach: AMP1 contains instrument
cluster components (i.e. classified ASIL B), AMP2 contains the infotainment
subsystem, whereas AMP3 realises a OSD for an Android OS that provides
capabilities to add, update and run dynamic functionality (i.e. ‘APPs’). The HW
platform provides four CPU cores, with two of them assigned to AMP2. The latter
host two EDs, while one ED contains a vOSD for creating a sandboxed Linux
environment and providing four virtual cores. The vOSD then again contains two
further EDs, utilizing the vcores.

Figure 4: Exemplary composition of different containment techniques.

Similar concepts for data and non-computational resource accesses are already in use
and approved for CE devices (e.g. Android Application Sandbox, Apple App
Sandbox), while the focus is not set on multiple in-parallel user-operated applications
(or components). Also other operating system specific solutions like ‘adaptive
partitioning’ for QNX focussing on the platforms computational resources and the
even more elaborate ‘cgroups’ on Linux feature the implementation of a containing
model. For a portable implementation the use of a generic system interface or the
abstraction within a domain specific software framework might be advantageous.

Proceedings of the Tenth International Network Conference (INC2014)

90

However, they may aid the partitioning within a particular component, but
inadequately separate components of different safety criticalness. For the latter only
multi-OS based containment might provide the required rigid partitioning.

5.2. Component Communication (COM)

Containment isolates the components, but they need to be able to interact with each
other; they are interdependent. Basically, the connections in between are realised
through functional interfaces, which enables component composition (also referred
to as binding). Those interfaces provide the services of the respective components,
i.e. implementing actions that both the provider and the consumer of the interface
understand. Hence the interfaces realise interoperability.

ICM Systems are highly interactive, communicating with users and other in-vehicle
systems. Hence, they rely on an event-based system based on event-triggers.
However, some system components have to fulfil strict temporal requirements and
therefore implement time-triggered behaviour of real-time systems. Nevertheless the
communication between the components is event-based, which affects both the
interfaces of the components and the communication channels. The latter have to be
implemented efficiently to reflect the required qualities like performance and
responsiveness of the system and the limited available HW resources. This leads to
the application of shared memory (SHM) communication, which provides flexibility
and adequate throughput. Events are processed using a central dispatching service to
relay messages from sender to addressee using synchronised queues (Knirsch et al.,
2012a). More complex communication is realised using synchronised data structures
(aka. ‘data containers’) within SHM. This implements a loose coupling of
components, while fostering an efficient communication flow and functional
interoperability.

5.3. Management of Shared Resources (SHR)

Compatibility means coexistence without adverse side effects. Components are
integrated into the head-unit and therefore share common resources. Although the
next generation multi-core HW provides more computational resources to the
system, components have to compete for other shared resources (SHR). Even worse,
the access to SHR was implicitly managed through the system’s task scheduler and
applied thread priorities and scheduling strategies on single-core HW. This is not the
case for in-parallel computed components on multi-core systems. The result is a non-
deterministic behaviour due to unmanaged access to SHR and the related latencies.
Important (i.e. high priority) components have to wait for unimportant. This affects
the compatibility of the components, independent of an applied concept for
component containment (e.g. the above described). A management layer as described
with the Shared Resource Arbiter (SHARB) in (Knirsch et al., 2012b) is able to make
the temporal behaviour related to the access to SHR more deterministic. Hence,
resource access management has positive effect on the compatibility.

Chapter 1 – INC Papers

91

5.4. Composite User Interface (CUI)

The user interface (UI) has to address the required flexibility for future systems as
outlined in 4.3. It constitutes a SHR with special characteristics: multiple
components may use the UI in parallel. For the graphical part, several components
may render a subset of the visualised frontend, to be blended and mixed on multiple
displays (e.g. centre console, instrument cluster, rear mirrors, head-up display).
Usually only one single HW graphic accelerator is available to support an appealing
presentation of information and entertainment content. The containment of
components creates requirements for a specific communication for UI (i.e. streaming
of video and audio). To prevent adverse interference while maintaining an efficient
communication, a SHM based compositing architecture provides an adequate
solution. Notwithstanding a partitioning of components using vOSDs (CDs based on
virtualisation techniques), subsets of the UI rendered by different components can be
composited while utilising multiple HW graphic accelerators (Knirsch et al., 2013).
This facilitates the compatibility due to the opportunity to build a homogeneous UI
while partitioning the components into CDs.

5.5. Software Framework (SWF)

The features proposed here leverage composability by affecting derived qualities. It
is not recommended to apply a single feature only due to negative or not sufficient
effects. A SW framework is able to combine those to simplify their application.
Additionally, such a framework is able to cover additional constructive aspects that
may have positive impact on composability. In accordance to (Neumann, 2004) this
includes modularity and encapsulation (i.e. containment), clean hierarchical and
vertical abstraction, separation of policy and mechanism, object orientation and
strong typing. Table 1 maps those aspects with the proposed architectural features.
Hence, a framework considering and effectively addressing the constructive aspects
by use of those features leads to improved composability.

constructive aspects 5.
1

C

O
N

5.
2

C
O

M

5.
3

S

H
R

5.
4

C

U
I

5.
5

S

W
F

modularity and encapsulation  

clean hierarchical and vertical abstraction  

separation of policy and mechanism  

object orientation 

strong typing 

Table 1: Constructive aspects mapped to architectural features.

6. Conclusions and the Future

In the past dynamic content for ICM systems was limited to data. Next generation
systems will provide capabilities to install and update functionality during the whole
product life cycle (i.e. after-market). At the same time, safety critical applications are
integrated onto the same platform, constituting systems of mixed criticality. This
puts emphasis on non-functional qualities, in particular on dependability and
composability, affected by parallel usage of shared resources (e.g. GPU, I/O, etc.) on

Proceedings of the Tenth International Network Conference (INC2014)

92

multi-core HW. This work is intended to provide guidance for the design of ICM
systems and related SW frameworks. Therefore qualities related to composability,
their interplay and effects were characterised.

Further, a set of architectural features needed to improve composability, while also
considering ICM system’s safety requirements and demands for appealing UIs have
been proposed. In summary, the combination of certain constructive aspects by use
of those features leverages the system’s SW components’ composability. This
provides support for the integration of dynamic functionality and hence prepares
ICM systems for future demands while ensuring a deterministic behaviour.

7. References

Attiogbé, C., André, P. and Ardourel, G. (2006), “Checking Component Composability”,
Software Composition, LNCS, Vol. 4089, Springer, pp. 18-33.

Burns, A. and Davis, R. (2013), “Mixed Criticality Systems - A Review”, 3rd Ed., Department
of Computer Science, University of York, 2013.

Chung, L. and do Prado Leite, J.C.S. (2009), “On Non-Functional Requirements in Software
Engineering”, Conceptual Modeling, LNCS, Vol. 5600, Springer, pp. 363-379.

Crnković, I., Sentilles, S., Vulgarakis, A. and Chaudron, M.R.V. (2011), “A Classification
Framework for Software Component Models”, IEEE Transactions on Software Engineering,
Vol. 37, No. 5, pp. 593–615.

Holzmann, G.J. (2013), “Landing a Spacecraft on Mars”, IEEE Software, Vol. 30, No. 2, pp.
83–86.

Knirsch, A., Vergata, S. and Wietzke, J. (2012a), “Strukturierung von Multimediasystemen für
Fahrzeuge”, Echtzeit 2012, Informatik Aktuell, Springer, pp. 69-78.

Knirsch, A., Schnarz, P. and Wietzke, J. (2012b), “Prioritized Access Arbitration to Shared
Resources on Integrated Software Systems in Multicore Environments,” 3rd IEEE
International Conference on Networked Embedded Systems for Every Application, pp. 1–8.

Knirsch, A., Theis, A., Wietzke, J. and Moore, R. (2013), “Compositing User Interfaces in
Partitioned In-Vehicle Infotainment”, Mensch & Computer 2013, Oldenbourg, pp. 63–70.

Monot, A., Navet, N., Bavoux, B. and Simonot-Lion, F. (2012) “Multi-source software on
multicore automotive ECUs - Combining runnable sequencing with task scheduling,” IEEE
Transactions on Industrial Electronics, Vol. 59, No. 10, pp. 3934–3942.

Mössinger, J. (2010), “Software in Automotive Systems”, IEEE Software, Vol. 27, No. 2, pp.
92–94.

Neumann, P.G. (2004), “Principled Assuredly Trustworthy Composable Architectures”,
Computer Science Laboratory, SRI International, Menlo Park, CA, USA.

Schnarz, P., Wietzke, J. and Stengel, I. (2014), “Towards Attacks on Restricted Memory
Areas through Co-Processors in Embedded Multi-OS Environments via Malicious Firmware
Injection”, 1st Workshop on Cryptography and Security in Computing Systems, Vienna.

Chapter 1 – INC Papers

93

Urgaonkar, B., Shenoy, P. and Roscoe, T. (2002), “Resource Overbooking and Application
Profiling in Shared Hosting Platforms,” SIGOPS Oper. Syst. Rev., Vol. 36, No. SI, pp. 239–
254.

Vergata, S., Knirsch, A. and Wietzke, J. (2011), “Integration zukünftiger In-Car-Multimedia-
systeme unter Verwendung von Virtualisierung und Multi-Core-Plattformen”, Echtzeit 2011,
Informatik Aktuell, Springer, pp. 21–28.

