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Abstract 

In-Car Multimedia systems have become a fundamental part of a car’s human-machine 
interface. Recent developments within the domain of mobile consumer electronics create 
demands for flexible functionality by use of after-market applications, also within the 
automotive sector. Further, current systems already provide connectivity to enable dynamic 
data using cellular access networks. Future systems will provide comparable features not only 
for data, but also for functionality. The capabilities for modification or enhancement of 
functionality using network connectivity requires a thorough consideration of certain software 
qualities, also with respect to operation within a safety critical environment and provisioning 
of an adequate user experience. This paper characterises relevant software qualities with a 
strong focus on composability. The objective is to provide a base for building a modular 
system that appears as a homogenous whole, while providing sufficient dependability. An 
architecture is proposed to illustrate the applicability of those qualities to a particular software 
system. 
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1. Introduction 

In recent years the significance of automotive information and entertainment (aka. 
infotainment) systems has grown rapidly. They represent the central information 
interface between the car and its occupants and already affect a prospective 
customer’s purchase decision. They combine an increasing number of software-
based functionalities of different importance and purpose, developed independently 
by multiple suppliers and integrated onto a shared hardware (HW) platform (aka. the 
‘head-unit’). The aim is to provide guidance and assistance, while enabling the driver 
to configure and control automotive functions and offer a rich variety of 
entertainment functionalities. This evolution has led to large-scale complex software 
systems of >20 million lines of code (MLOC), decomposed into software 
components to tackle the complexity and integrated into the head-unit to achieve cost 
efficiency in production. The head-unit features various interfaces to other systems 
and the occupants of the car, and their mobile or storage devices. Figure 1 depicts 
some common components and interfaces of next generation systems. 
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Figure 1: Exemplary components and interfaces. 

Whereas the scope of past systems were limited to In-Vehicle Infotainment (IVI), 
current developments led to systems where the distinction of safety critical software 
functionalities, like e.g. the instrument cluster, becomes blurred due to integration. 
The instrument cluster provides functionality (e.g. indicators for gear, exterior light, 
speed control) that is classified safety critical using level ASIL B (Automotive Safety 
Integrity Level) following ISO 26262 “Road vehicles – Functional safety”. Currently 
there are already systems available that display IVI content within a fully digital 
instrument cluster. Those systems are realised using several distinct platforms (aka. 
electronic control units (ECU)) interconnected by in-vehicle bus systems (e.g. CAN, 
MOST) and direct links to achieve an efficient video transport (e.g. LVDS).  

It is the intention of the car manufacturers to reduce the number of ECUs, while 
utilizing available multi-core HW architectures (Monot et al., 2012). A decreasing 
number of dedicated HW units increase the integration density at the software level 
for a single HW platform while using a multi-source code base. In result the head-
unit evolves into a mixed critical system (MCS), combining distinct levels of 
assurance against failure (Burns and Davis, 2013). Nevertheless, safety critical and 
non-safety critical functions may be still separated at the software level to prevent 
unwanted mutual interference. The objective is to maintain the necessary reliability 
of vehicular software, with a failure rate of about one part per million in a year 
(Mössinger, 2010).  

Future IVI is anticipated to go beyond just information and entertainment due to the 
fusion with other existing and upcoming functionality to build an integral UI for the 
occupants. In the following the broader term In-Car Multimedia (ICM) is used to 
differentiate from IVI. Despite this heterogeneity at the software (SW) level, the user 
interface has to provide all functionality in a comprehensive and uniform way, 
blended into the car-manufacturer’s usage concept. To achieve an adequate and 
purpose-oriented user experience (UX), both the allocation and the presentation of 
the content has to respect the car’s operating state, the user’s preferences, and 
interaction with the system, while considering a multi-display environment. 
Additionally, the software system has to meet specific temporal requirements while 
being deployed to a resource constrained embedded HW platform. Moreover, the 
system contains safety critical components and is operating within a safety relevant 
environment and therefore has to provide sufficient dependability, or more simply: it 
must work as intended. 
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The impact of these challenges is amplified by the demands and needs for dynamic 
content and functionality, available through wireless access networks (i.e. 3G, LTE). 
This enables ICM systems to dynamically update both data (e.g. geographical maps, 
traffic information) and functionality (e.g. ‘apps’) as provided for consumer 
electronics (CE) using ‘app-stores/-markets’. Mössinger (2010) formulates this as 
follows: 

“The next software revolution in vehicles is imminent as multimedia and 
consumer electronics enter the automotive world. Vehicles will be connected 
to the Internet and to all kinds of nomadic and home-based devices as new 
sources for automotive software, such as open source, emerge.” 
 

Such SW deployment provides new opportunities for after-market solutions and 
maintenance, to reflect the relatively long product life cycle of automotive systems in 
comparison to CE. This also implies a new dimension of customisation by providing 
the ‘user’ freedom to choose what to integrate on the system. The consequence is an 
increased independency from and between suppliers of SW functionality. This raises 
additional issues regarding composability and the integration onto a common HW 
platform while maintaining a deterministic predefined temporal behaviour (i.e. 
dynamic aspects), to reflect the different degrees of importance of the integrated SW 
components.  

In the following, we name and analyse relevant qualities and their relationships that 
have impact on the composability of dependable modular systems - using ICM 
systems connected to infrastructure-based wireless access networks as an illustrative 
example. Further, we match those qualities to a SW architecture for demonstrating 
the applicability onto practical systems. 

2. Related Work 

Burns and Davis (2013) provide a comprehensive review on MCS. They classify the 
prevention of interference between tasks from different components as primary 
concern with the implementation of MCS. Further, they name AUTOSAR as 
software standard of the European automotive industry for addressing mixed 
criticality issues. As foundation to standardisation they address research questions on 
how to reconcile  the conflicting requirements of partitioning for assurance and 
sharing for efficient resource usage as fundamental: 

“[…] how, in a disciplined way, to reconcile the conflicting requirements of 
partitioning for (safety) assurance and sharing for efficient resource usage.” 
 

AUTOSAR provides mature means for partitioning and hence prevention of 
interference between different components (Mössinger, 2010). Hence it supports the 
shift from the “one function per ECU” paradigm to more centralized architecture 
designs (Monot et al., 2012). But it is rather static and does not provide the necessary 
capabilities to integrate software components (i.e. dynamic content) originated from 
the CE domain. However, an AUTOSAR operating system (OS) may complement a 
system architecture to contain safety critical components, which is hosting multiple 
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parallel containers with less critical software to support the demands for dynamic 
data and functionality. 

Chung and do Prado Leite (2009) provide a comprehensive overview on the 
treatment of non-functional requirements (NFR). They claim the concept of quality is 
fundamental to software engineering. Both functional and non-functional 
characteristics must be taken into consideration during development, because 
functionality is not useful or usable without provisioning the necessary non-
functional characteristics or quality attributes. They provide definitions to clarify 
terms related to NFR, describe differences to non-SW systems, and reason about the 
lop-sided emphasis in functionality:  

“However, partly due to the short history behind software engineering, partly 
due to the demand on quickly having running systems fulfilling the basic 
necessity, and also partly due to the 'soft' nature of non-functional things, 
most of the attention […] has been centred on notations and techniques for 
defining and providing the functions […].”  
 

Attiogbé et al. (2006) propose the verification of composability using a formal 
model. They define such a model based on components’ characteristics. In detail 
those are an identifier, a state, and an interface made of services that realise the 
interaction with the environment (i.e. other components). They define composability 
by considering the links between the components’ services and their behavioural 
compatibility. The focus is basically limited on the system’s functionality. Although 
the interface may contain details on characteristics, they omit an explicit modelling 
of NFRs. 

Component-based software engineering (CBSE) has been a research area for many 
years. Hence, there are already a number component models with different aims and 
targeted for different domains available. A component model essentially consists of 
rules defining the construction of the components and their assembly. Crnković et al.  
(2011) provides a comprehensive overview on many of those and proposes a 
classification framework to support differentiation based on different dimensions to 
factor in the different aspects of the development process using an expressive formal 
model. They specify a component by a set of ‘component properties’, which covers 
both functional and non-functional properties (referred to as ‘extra-functional 
properties’ (EFP)): a component consists of a functional interface providing or using 
services, and a set of non-functional properties. Bindings define the connections 
between interfaces, whereas bindings are distinguished into connections between 
components and platform (i.e. those which enable component integration by use of 
an adequate abstraction layer) and into connections between components (i.e. those 
which enable component interaction by use of interoperable functional interfaces). 
Further, they provide information on specification, management, and composition of 
NFRs. Those ideas and their terminology are adopted for the concepts provided 
below. 
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3. Software Qualities related to Composable Systems 

Modular systems are rendered by use of more or less distinct and heterogeneous 
components. To form an integrated whole those components have to be composable. 
This feature is expressed by the quality ‘composability’, which has to be reflected by 
the system’s requirements to define targeted characteristics. The requirements also 
have to consider other non-functional qualities, referred to as non-functional 
requirements (NFR). While functional requirements reflect the purpose of the SW 
system (Chung and do Prado Leite, 2009), NFRs express the SW system’s 
characteristics and attributes to make it useful and usable under stated conditions.  

 
Figure 2: Qualities related to composability. 

3.1. Composability 

Composability is a complex quality. To make this term more tangible and also 
support the classification of whether a system meets a certain degree of 
composability, it is decomposed into the most significant and related qualities and 
characteristics, which are detailed in the following sections. Unfortunately, most 
classification schemes for NFRs are inconsistent with each other (Chung and 
do Prado Leite, 2009) and do not sufficiently recognize potential interactions 
between requirements. Hence, in the following sections the focus is kept on 
composability. 

3.2. Compatibility and Interoperability 

Composability mainly depends on compatibility and interoperability. Following the 
definition of Neumann (2004), compatibility implies the possible coexistence of 
different components (or entities) without adverse side effects. Interoperability 
addresses the ability of those different components to work constructively with one 
another. Both compatibility and interoperability are constructive aspects of SW 
engineering and therefore have to be considered already during the system design 
phase. This also implies that a system that lacks compatibility and/or interoperability 
might not be able to be refactored for improvement of those qualities without 
significant efforts. This statement is also supported by Chung and do Prado Leite 
(2009), who propose that NFRs play a critical role for architectural design. 
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3.3. Scalability 

Further, composability and its derived qualities compatibility and interoperability 
have an effect on the scalability of a modular system. This is mainly related to the 
extendibility regarding the number of composed components. Also the reusability of 
the system’s components increases with improved composability and therefore may 
have positive effects on the efficiency of the development process due to the possible 
reuse of already existing or legacy components. 

3.4. Dependability 

With regards to the operation within a safety relevant environment and containing 
safety critical functionality, the ICM system’s dependability takes on a special role, 
which has to be considered throughout system development, maintenance and 
deployment of dynamic functionality. This includes, but is not limited to, the 
system’s security, reliability, fault tolerance, survivability and performance. 

4. Applied Development of ICM Systems 

Based upon the information gathered through involvement in several multi-national 
development projects of ICM systems at different Original Equipment Manufacturers 
(OEMs), it can be observed that the industry does not apply a comprehensive 
approach to achieving composable systems. The system qualities and characteristics 
described above are not addressed adequately (if they are addressed at all) during the 
constructive design and development phase. In reality, the composing of components 
is mainly seen from a functional viewpoint, covering the components’ interfaces with 
respect to the functional interdependencies. This is necessary but not sufficient to 
achieve composable systems. The following section describes some of the most 
critical issues that have been observed. 

4.1. Temporal Behaviour 

During the operation of the system the computational requirements and hence the 
computational load varies for different components, depending on the current system 
state, user interaction, or external events (i.e. triggered by automotive systems and 
sensors or through network communication). This may result in high-load (or peak-
load) situations, where the system behaviour is not defined due to shared use of both 
computational and non-computational resources (e.g. input/output devices). Further, 
the system behaviour is difficult to test, due to various potential permutations of load 
distributions regarding the actual state of the components and depending on the 
actual integrated components. The latter gains significance for dynamic functionality 
(i.e. on user request), because neither the constellation of integrated components nor 
their potential mutual interferences are foreseeable. This may result in sporadic 
temporal interferences between components, violating the components’ 
compatibility. Components that dynamically adjust the priorities of their executing 
threads and hence bias the scheduling without knowledge of other components’ 
current state or their importance related to their semantics with a view on the overall 
system amplify such effects. Even more adverse is the circumstance that usually 
temporal behaviour isn’t defined on the granularity of components. Latency 
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requirements and performance characteristics serve as examples here. Hence, a 
violation of the required temporal behaviour often does not appear before integration 
of all components. With dynamic functionality for connected head-units this can 
cause unpredictable behaviour during the product-lifecycle, affecting the 
compatibility. 

4.2. Memory Footprint 

Similar to the computational resources, the platform’s memory capabilities are also 
limited whereas the actual demands vary during system operation. While the 
footprint of a component can be estimated based on static analysis of the source code 
(if available), it is unlikely that the platform will provide as much memory as the 
overall system may theoretically demand. For dynamic functionality it is impossible 
to anticipate how much memory the platform has to provide to the components. The 
available memory may not be sufficient to cover all functionalities. A solution is 
provided by use of over-commit (aka. over-booking) (Urgaonkar et al., 2002) which 
also affects deterministic temporal behaviour and hence the component’s 
compatibility. 

4.3. User Interface 

The automotive user interface (UI) provides multiple input and output facilities to 
enable a multi-modal interaction with various software components in parallel use. 
Many of those provide a graphical front end using the car’s multi-display 
environment and concurrently utilise available graphical processing units (GPU) for 
HW acceleration. Due to a lack of the availability of multi-GPU platforms, this 
implies a bottleneck with potential adverse temporal effects for parallel computed 
components that rely on graphical output. Furthermore, as each of the components 
provide only a portion of the graphical user interface (GUI), the independent 
artefacts need to be blended to provide the car’s occupants a consistent and uniform 
look and usage concept. The compositing of UI artefacts is related to both the 
components’ compatibility and interoperability. A valid solution may be to 
implement the whole UI within a distinct component that relies on distinct 
“functional” components (this is basically the current approach). However, such an 
approach inhibits the modification and extension of those “functional” components 
without adaptation of the UI component. Hence this centralised UI approach is not 
applicable for dynamic functionality.  

4.4. Tools and Techniques 

Unfortunately, based on the experience gathered in industry projects, the applied 
business project management tools or techniques do not provide significant 
assistance. They may help to mitigate effects by adding transparency and traceability 
to the development process but also obfuscate the root cause: Insufficient addressing 
of composability throughout the constructive phases of the system development. This 
also applies to use of coding standards. Although they may help to improve 
maintainability and reliability by defining how the code must be structured and 
which language features should and should not be used, and hence represent an 
important building block for complex systems, composability lies beyond such non-
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software-architectural implementation rules. Nevertheless, coding standards can be 
used for automated checking of the components’ sources statically for compliance 
with clear results to support the reliability of the system under development 
(Holzman, 2013), positively affecting the system’s dependability.  

The increasing system complexity and the heterogeneous functionality makes the 
consideration of composability throughout the system development overdue. This 
gets even more emphasised with the perspective on integration of dynamic 
functionality while considering an adequate degree of dependability. 

5. Proposed Architectural Features 

Based upon the problems detailed above, several suggestions can be made to aim for 
the goal of a more deterministic component integration and prevention of adverse 
component interactions. The intention is to assemble building blocks that bridge the 
gap between the conceptual approaches to an applicable solution (or at least 
significant improvements) for ICM systems that integrate dynamic functionality. 
However, a single building block may improve the system but also introduce some 
drawbacks. Hence it is recommended to utilise all suggestions in combination to 
both: benefit from the improvements while mitigating individual negative effects. 
The following proposed architectural features were evaluated using a prototype 
implementation, based upon OpenICM (Knirsch et al., 2012a).  

5.1. Component Containment (CON) 

Following the classification of Crnković et al. (2011) an exogenous management of 
extra-functional properties (i.e. NFRs) using containers to encapsulate the 
components is suggested. While the components concentrate on functional aspects, 
the containers take care of the NFRs by preventing unwanted interference. This 
obviates any modification to the components for system integration and effectively 
implements a separation of concerns. The functional binding between the 
components is independent of the management of the NFRs. This corresponds to the 
concept of execution domains (ED), whereas such containers for managing temporal 
NFRs are implemented using CPU affinity techniques in multi-core environments, 
virtualisation techniques, or both in combination (Vergata et al., 2011). For a stricter 
encapsulation Schnarz et al. (2014) describe an asymmetric multiprocessing (AMP) 
approach in combination with a multi-OS environment. Whereas EDs provide 
containment within a given OS, approaches based upon a multi-OS environment 
support containment using an OS domain (OSD), and vOSD for virtualisation 
respectively. Containment domain (CD) is used as generic term for ED, OSD and 
vOSD. Figure 3 illustrates containment using distinct CDs, whereas the execution 
platform depends on the actual implementation of the CD (i.e. ED, OSD, or vOSD). 

 
Figure 3: Using CDs for component containment. 



Chapter 1 – INC Papers 

89 

An assembly of components sharing a single CD is refereed to as ‘composite 
component’. Although the NFRs of a composite component are derived from the 
individual components, the characteristics of the composition are not. The 
composition is a set of components that interact together and hence also interfere 
with each other affecting compatibility. The possibly resulting adverse behaviour 
depends e.g. on the current system state, user interaction, component interaction and 
system load. This leads to a non-deterministic behaviour that may violate super-
ordinated NFRs, and potentially affect functional requirements. However, clustering 
components based on certain characteristics (i.e. similarities) like criticalness, 
component provider, or semantics may provide adequate means to limit the 
propagation of adverse interaction. Such containment for dynamic functionality 
introduced after-market can be realised by use of a CD.  

Figure 4 illustrates an exemplary ICM design using different types of CDs. Those are 
arranged hierarchically to demonstrate the flexibility in assembling mixed 
approaches for component containment. This means a particular CD may contain one 
or more other CDs. The depicted system consists of three distinct OSDs for very 
strict isolation, relying on an AMP based approach: AMP1 contains instrument 
cluster components  (i.e. classified ASIL B), AMP2 contains the infotainment 
subsystem, whereas AMP3 realises a OSD for an Android OS that provides 
capabilities to add, update and run dynamic functionality (i.e. ‘APPs’). The HW 
platform provides four CPU cores, with two of them assigned to AMP2. The latter 
host two EDs, while one ED contains a vOSD for creating a sandboxed Linux 
environment and providing four virtual cores. The vOSD then again contains two 
further EDs, utilizing the vcores. 

  
Figure 4: Exemplary composition of different containment techniques. 

Similar concepts for data and non-computational resource accesses are already in use 
and approved for CE devices (e.g. Android Application Sandbox, Apple App 
Sandbox), while the focus is not set on multiple in-parallel user-operated applications 
(or components). Also other operating system specific solutions like ‘adaptive 
partitioning’ for QNX focussing on the platforms computational resources and the 
even more elaborate ‘cgroups’ on Linux feature the implementation of a containing 
model. For a portable implementation the use of a generic system interface or the 
abstraction within a domain specific software framework might be advantageous. 
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However, they may aid the partitioning within a particular component, but 
inadequately separate components of different safety criticalness. For the latter only 
multi-OS based containment might provide the required rigid partitioning. 

5.2. Component Communication (COM) 

Containment isolates the components, but they need to be able to interact with each 
other; they are interdependent. Basically, the connections in between are realised 
through functional interfaces, which enables component composition (also referred 
to as binding). Those interfaces provide the services of the respective components, 
i.e. implementing actions that both the provider and the consumer of the interface 
understand. Hence the interfaces realise interoperability. 

ICM Systems are highly interactive, communicating with users and other in-vehicle 
systems. Hence, they rely on an event-based system based on event-triggers. 
However, some system components have to fulfil strict temporal requirements and 
therefore implement time-triggered behaviour of real-time systems. Nevertheless the 
communication between the components is event-based, which affects both the 
interfaces of the components and the communication channels. The latter have to be 
implemented efficiently to reflect the required qualities like performance and 
responsiveness of the system and the limited available HW resources. This leads to 
the application of shared memory (SHM) communication, which provides flexibility 
and adequate throughput. Events are processed using a central dispatching service to 
relay messages from sender to addressee using synchronised queues (Knirsch et al., 
2012a). More complex communication is realised using synchronised data structures 
(aka. ‘data containers’) within SHM. This implements a loose coupling of 
components, while fostering an efficient communication flow and functional 
interoperability. 

5.3. Management of Shared Resources (SHR) 

Compatibility means coexistence without adverse side effects. Components are 
integrated into the head-unit and therefore share common resources. Although the 
next generation multi-core HW provides more computational resources to the 
system, components have to compete for other shared resources (SHR). Even worse, 
the access to SHR was implicitly managed through the system’s task scheduler and 
applied thread priorities and scheduling strategies on single-core HW. This is not the 
case for in-parallel computed components on multi-core systems. The result is a non-
deterministic behaviour due to unmanaged access to SHR and the related latencies. 
Important (i.e. high priority) components have to wait for unimportant. This affects 
the compatibility of the components, independent of an applied concept for 
component containment (e.g. the above described). A management layer as described 
with the Shared Resource Arbiter (SHARB) in (Knirsch et al., 2012b) is able to make 
the temporal behaviour related to the access to SHR more deterministic. Hence, 
resource access management has positive effect on the compatibility. 
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5.4. Composite User Interface (CUI) 

The user interface (UI) has to address the required flexibility for future systems as 
outlined in 4.3. It constitutes a SHR with special characteristics: multiple 
components may use the UI in parallel. For the graphical part, several components 
may render a subset of the visualised frontend, to be blended and mixed on multiple 
displays (e.g. centre console, instrument cluster, rear mirrors, head-up display). 
Usually only one single HW graphic accelerator is available to support an appealing 
presentation of information and entertainment content. The containment of 
components creates requirements for a specific communication for UI (i.e. streaming 
of video and audio). To prevent adverse interference while maintaining an efficient 
communication, a SHM based compositing architecture provides an adequate 
solution. Notwithstanding a partitioning of components using vOSDs (CDs based on 
virtualisation techniques), subsets of the UI rendered by different components can be 
composited while utilising multiple HW graphic accelerators (Knirsch et al., 2013). 
This facilitates the compatibility due to the opportunity to build a homogeneous UI 
while partitioning the components into CDs. 

5.5. Software Framework (SWF) 

The features proposed here leverage composability by affecting derived qualities. It 
is not recommended to apply a single feature only due to negative or not sufficient 
effects. A SW framework is able to combine those to simplify their application. 
Additionally, such a framework is able to cover additional constructive aspects that 
may have positive impact on composability. In accordance to (Neumann, 2004) this 
includes modularity and encapsulation (i.e. containment), clean hierarchical and 
vertical abstraction, separation of policy and mechanism, object orientation and 
strong typing. Table 1 maps those aspects with the proposed architectural features. 
Hence, a framework considering and effectively addressing the constructive aspects 
by use of those features leads to improved composability. 
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modularity and encapsulation      

clean hierarchical and vertical abstraction      

separation of policy and mechanism      

object orientation     

strong typing     

Table 1: Constructive aspects mapped to architectural features. 

6. Conclusions and the Future 

In the past dynamic content for ICM systems was limited to data. Next generation 
systems will provide capabilities to install and update functionality during the whole 
product life cycle (i.e. after-market). At the same time, safety critical applications are 
integrated onto the same platform, constituting systems of mixed criticality. This 
puts emphasis on non-functional qualities, in particular on dependability and 
composability, affected by parallel usage of shared resources (e.g. GPU, I/O, etc.) on 
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multi-core HW. This work is intended to provide guidance for the design of ICM 
systems and related SW frameworks. Therefore qualities related to composability, 
their interplay and effects were characterised.  

Further, a set of architectural features needed to improve composability, while also 
considering ICM system’s safety requirements and demands for appealing UIs have 
been proposed. In summary, the combination of certain constructive aspects by use 
of those features leverages the system’s SW components’ composability. This 
provides support for the integration of dynamic functionality and hence prepares 
ICM systems for future demands while ensuring a deterministic behaviour. 
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