
Proceedings of the Fourth International
Workshop on Digital Forensics & Incident Analysis (WDFIA 2009)

33

Real-world Detection of Polymorphic Attacks

M. Polychronakis1, K.G. Anagnostakis2 and E.P. Markatos1

1Institute of Computer Science, Foundation for Research & Technology – Hellas,
2Institute for Infocomm Research, Singapore

e-mail: {mikepo, markatos}@ics.forth.gr, kostas@i2r.a-star.edu.sg

Abstract

As state-of-the-art attack detection technology becomes more prevalent, attackers have started
to employ evasion techniques such as code obfuscation and polymorphism to defeat existing
defenses. We have recently proposed network-level emulation, a heuristic detection method
that scans network traffic to detect polymorphic attacks. Our approach uses a CPU emulator to
dynamically analyze every potential instruction sequence in the inspected traffic, aiming to
identify the execution behavior of certain malicious code classes, such as self-decrypting
polymorphic shellcode. In this paper, we present results and experiences from deployments of
network-level emulation in production networks. After more than a year of continuous
operation, our prototype implementation has captured more than a million attacks against real
systems, while so far has not resulted to any false positives. The observed attacks employ a
highly diverse set of exploits, often against less widely used vulnerable services, and in some
cases, sophisticated obfuscation schemes.

Keywords

Polymorphism, intrusion detection, code emulation

1. Introduction

The number of attacks against Internet-connected systems continues to grow at
alarming rates (Provos et al., 2007, Yegneswaran et al., 2003). Along with the more
recently popularized client-side attacks that exploit vulnerabilities in users’ software
such as browsers and media players (Provos et al., 2008), remote code execution
vulnerabilities continue to plague even the latest versions of popular OSes and server
applications (Microsoft Corp. web site, 2008) and are effectively being exploited by
malware, resulting in millions of infected hosts (F-Secure web site, 2009).

Besides the constantly increasing number of security incidents, we have also been
witnessing a steady increase in attack sophistication and diversity. Motivated by the
illicit financial gain against their victims, cyber-criminals constantly try to improve
the effectiveness and evasiveness of their attacks, with the aim to compromise as
many systems as possible and keep them under control for as long as possible. As
detection mechanisms improve, attackers employ increasingly sophisticated methods
to evade them. Techniques such as code obfuscation and polymorphism (Szor, 2005)
pose significant challenges to existing network-level detectors.

Proceedings of the Fourth International
Workshop on Digital Forensics & Incident Analysis (WDFIA 2009)

34

Using polymorphism, the code in the attack vector—which is usually referred to as
shellcode—is mutated so that each instance of the same attack acquires a unique byte
pattern, thereby making fingerprinting of the whole breed very difficult. Polymorphic
shellcode engines (Metasploit Web Site, 2009, Bania 2005, Detristan et al., 2003,
K2, 2001, Rix, 2001, Wever, 2004) create different mutations of the same initial
shellcode—which is also known as the payload—by encrypting it with a different
random key, and prepending to it a decryption routine that on runtime decrypts and
executes the encrypted payload. Since the decryption code itself cannot be encrypted,
advanced polymorphic encoders also mutate the exposed part of the shellcode using
metamorphism (Szor, 2005).

Accurate attack fingerprinting is getting increasingly important for the already
inherently hard problem of identifying previously unknown attacks, also known as
zero-day attacks, while trying to minimize the rate of false positives. A major
outstanding question in security research and engineering is thus whether we can
proactively develop the tools needed to contain advanced polymorphic attacks.

Along with the several research efforts towards this goal, we have recently proposed
network-level emulation (Polychronakis et al., 2006, Polychronakis et al., 2007), a
passive network monitoring approach for the detection of zero-day polymorphic
attacks. In contrast to previous work, network-level emulation uses a CPU emulator
to dynamically analyze every potential instruction sequence in the inspected traffic,
aiming to identify the execution behavior of certain malicious code classes, such as
self-decrypting polymorphic shellcode. Network-level emulation does not rely on
any exploit or vulnerability specific signatures, which allows the detection of
previously unknown attacks, while the actual execution of the attack code on the
emulator makes the detector robust to evasion techniques such as self-modifying
code. Furthermore, each input is inspected autonomously, making the approach
effective against targeted attacks.

We have deployed our prototype implementation, called nemu, in research and
educational networks across Europe. After more than a year of continuous operation,
nemu has detected more than a million attacks against real systems in the monitored
networks, while so far has not resulted to any false positives. In this work, we present
an analysis of more than 1.2 million polymorphic code injection attacks against real
Internet hosts—not honeypots—detected over the course of more than 20 months in
the above deployments. Besides common exploits against popular OS services
associated with multiple well known vulnerabilities, we witnessed sporadic attacks
against less widely used services and third-party applications. At the same time,
although the bulk of the attacks use naive encryption or polymorphism techniques,
we observed a few attacks employing more sophisticated obfuscation schemes.

2. Network-level Emulation

We briefly describe some aspects of the network-level emulation detection
technique. The interested reader is referred to our previous work (Polychronakis et

Proceedings of the Fourth International
Workshop on Digital Forensics & Incident Analysis (WDFIA 2009)

35

al., 2006, Polychronakis et al., 2007) for a thorough description of the approach and
its implementation details.

The principle behind network-level emulation is that the machine code interpretation
of arbitrary data results to random code, which, when it is attempted to run on an
actual CPU, usually crashes soon, e.g., due to the execution of an illegal instruction.
In contrast, if some network request actually contains polymorphic shellcode, then
the shellcode runs normally, exhibiting a certain detectable behavior, as illustrated in
Figure 1.

Figure 1: Overview of network-level emulation.

After TCP stream reassembly, each network request is interpreted as machine code
and is loaded on a CPU emulator. The execution of the random code corresponding
to a benign request usually ends abruptly after a few instructions, while the execution
of an actual polymorphic shellcode exhibits a certain detectable behavior.

Nemu inspects the client-initiated data of each network flow, which may contain
malicious requests towards vulnerable services. Any server-initiated data, such as the
content served by a web server, are ignored. For TCP packets, the application-level
stream is reconstructed using TCP stream reassembly. In case of large client-initiated
streams, e.g., due to file uploads, only the first 64KB of the stream are inspected.
Each input is mapped to a random memory location in the virtual address space of an
IA-32 emulator, as shown in Figure 2. Since the exact location of the shellcode in the
input stream is not known in advance, the emulator repeats the execution multiple
times, starting from each and every position of the stream, although in certain cases
some the execution of some code paths can be skipped to optimize runtime
performance (Polychronakis et al., 2007).

Before the beginning of a new execution, the state of the CPU is randomized, while
any accidental memory modifications in the addresses where the attack vector has
been mapped to are rolled back after the end of each execution. Since the execution
of random code sometimes may not stop soon, e.g., due to the accidental formation
of loop structures that may execute for a very large number of iterations, if the

Proceedings of the Fourth International
Workshop on Digital Forensics & Incident Analysis (WDFIA 2009)

36

number of executed instructions in some execution chain reaches a certain execution
threshold, then the execution is terminated.

Figure 2: A typical execution of a polymorphic shellcode using network-level
emulation.

The execution of polymorphic shellcode is identified by two key runtime behavioral
characteristics: the execution of some form of GetPC code, and the occurrence of
several read operations from the memory addresses of the input stream itself, as
illustrated in Figure 2. The GetPC code is used by the shellcode for finding the
absolute address of the injected code, which is mandatory for subsequently
decrypting the encrypted payload, and involves the execution of an instruction from
the call or fstenv instruction groups (Polychronakis et al., 2006).

External Internal
Network Total #

attacks
#attacks #srcIP #dstIP #attacks #srcIP #dstIP

NRN1 1240716 396899 (32.0%) 10014 769 843817 (68.0%) 143 331572

NRN2 12390 2617 (21.1%) 1043 82 9773 (78.9%) 66 4070

NRN3 1961 441 (22.5%) 113 49 1520 (77.5%) 8 1518

EDU 20516 13579 (66.2%) 3275 410 6937 (33.8%) 351 2253

Table 1: Number of captured attacks from four deployments of nemu.

3. Data Set

Our analysis is based on the attacks captured by nemu in three deployments in
European National Research Networks (referred to as NRN1-3) and one deployment
in a public Educational Network in Greece (referred to as EDU). In each installation,
nemu runs on a passive monitoring sensor that inspects all the traffic of the access
link that connects the organization to the Internet. The sensors were continuously
operational for more than a year, except some occasional downtimes. The exact
duration of each deployment was March 2007 – October 08 for NRN1 and EDU, and
March 2007 – February 2008 for NRN2 and NRN3. Details about the exact number
of detected attacks in each deployment, along with the number of attack sources and
destinations, is shown in Table 1. In these four deployments, nemu collectively
captured more than 1.2 million attacks targeting real production systems in the
monitored networks.

Proceedings of the Fourth International
Workshop on Digital Forensics & Incident Analysis (WDFIA 2009)

37

We differentiate between external attacks, which originate from external IP
addresses and target hosts within the monitored network, and internal attacks, which
originate from hosts within the monitored networks. Internal attacks usually come
from infected PCs that massively attempt to propagate malware in the local network
and the Internet. We should note that due to NAT, DHCP, and the long duration of
the data collection, a single IP may correspond to more than one physical computer.

4. Overall Attack Activity

As shown in Table 1, from the 1.240.716 attacks detected in NRN1, about one third
of them were launched from 10.014 external IP addresses and targeted 769 hosts
within the organization. The bulk of the attacks originated from143 different internal
hosts, targeting 331.572 different active hosts across the Internet. Interestingly, 116
of the 143 internal hosts that launched attacks are also among the 769 victim hosts,
indicating that possibly some of the detected attacks were successful.

Figure 3: Overall external attack activity. Although the bulk of the attacks
target well known vulnerable services, there are also sporadic attacks against

less widely used services.

The overall attack statistics for NRN2 and NRN3 are similar to NRN1, but the
number of detected attacks is orders of magnitude smaller, due to the smaller attack
surface of infected or potentially vulnerable internal hosts that launched or received
attacks. In contrast to the three NRNs, about two thirds of the attacks captured in the
EDU deployment originated from external hosts.

An overall view of the external and internal attack activity for all deployments is
presented in Figure 3 and Figure 4, respectively. In both figures, the upper part
shows the attack activity according to the targeted port, while the bottom part shows
the number of attacks per hour. For the targeted ports, the darker the color of the dot,
the larger the number of attacks targeting this port in that hour. There are occasions

Proceedings of the Fourth International
Workshop on Digital Forensics & Incident Analysis (WDFIA 2009)

38

with hundreds of attacks in one hour, mostly due to attack bursts from a single source
that target all active hosts in neighboring subnets.

Figure 4: Overall internal attack activity.

5. Attack Analysis

As expected, the most highly attacked ports for both internal and external attacks
include ports 135, 139, and 445, which correspond to Windows services that have
been associated with multiple vulnerabilities and are still being highly exploited in
the wild. Actually, the second most attacked port is port 2967, which is related to an
exploit against a popular corporate virus scanner that happened to be installed in
many hosts of the monitored networks. As shown in Figure 4, several of these hosts
got infected before the patch was released and were constantly propagating the attack
for a long period. Other commonly attacked services include web servers (port 80)
and mail servers (port 25).

It is interesting to note that there also exist sporadic attacks to many less commonly
attacked ports like 3050, 5000, and 41523. With firewalls and OS-level protections
now being widely deployed, attackers have started turning their attention to third-
party services and applications, such as virus scanners, mail servers, backup servers,
and DBMSes. Although such services are not very popular among typical home
users, they are often found in corporate environments, and most importantly, they
usually do not get the proper attention regarding patching, maintenance, and security
hardening. Thus, these services have become attackers’ next target option for remote
system compromise, and as the above results show, many such exploits have been
actively used in the wild. Nemu scans the traffic towards any port and does not rely
on exploit or vulnerability specific signatures, thus it is capable to detect
polymorphic attacks destined to even less widely used or “forgotten” services.

Overall, the captured attacks targeted 26 different ports. The number of attacks per
port is shown in Figure 5 (dark bars). A large number of attacks targeted port 1025,
attempting to exploit the Microsoft Windows RPC malformed message buffer
overflow vulnerability. Less commonly attacked services include POP3 and IMAP
servers (ports 110 and 143), Oracle XDB FTP servers (port 2100), the Windows
Internet Naming Service (WINS) (port 42), Microsoft SQL servers (port 1433),

Proceedings of the Fourth International
Workshop on Digital Forensics & Incident Analysis (WDFIA 2009)

39

Creative Server (port 453), ShixxNOTE 6.net messenger (port 2000), Microsoft
Message Queuing service (2103), Borland InterBase database server (port 3050), and
the CA BrightStor Agent for Microsoft SQL Server (port 41523). The attack against
port 5000 was related to a vulnerability in the Windows XP Universal Plug and Play
implementation, while the attack against port 6881 attempted to exploit a vulnerable
P2P file sharing program. The single attack against port 5554 was launched by
W32.dabber, a worm that propagates by exploiting a vulnerability in the FTP server
started by W32.Sasser and its variants. Other incidents involving vulnerable malware
include attacks against W32.Sasser's FTP server (port 1023) and the WinHole trojan
(port 1082).

Figure 5: Number of attacks and unique shellcodes for different ports.

For each attack, we computed theMD5 hash of the initial shellcode as seen on the
wire and plotted the number of unique shellcodes per port in Figure 5 (light bars).
Comparing the dark and light bars, we see that in some cases the number of unique
shellcodes is quite smaller than the number of attacks. If truly polymorphic shellcode
were used, we would expect the number of shellcodes to be equal to the number of
attacks, since each instance of a polymorphic shellcode is different than any other
instance. However, in most attacks the encryption scheme is very simple, and for the
same malware family, the generated shellcodes usually have been encrypted using
the same key and carry the same decryption routine. Besides code obfuscation, even
such naively applied encryption is convenient for the avoidance of NULL, CR, LF,
and depending on the exploit, other restricted bytes that should not be present in the
attack vector, since this can be taken care of by the encryption engine (Metasploit
Web Site, 2009).

Three of the attacks against port 3050 are particularly interesting due to the increased
sophistication of the encryption scheme used. The shellcode is encrypted with a
variant of the alpha mixed encoder from Metasploit, which produces
alphanumeric mixed-case shellcode, with some differences in the GetPC code (the
decryption loops are identical). The interesting aspect of these particular attacks is
that the decrypted payload produced by the alphanumeric shellcode is again an
instance of a self-decrypting shellcode, this time generated by a variant of the

Proceedings of the Fourth International
Workshop on Digital Forensics & Incident Analysis (WDFIA 2009)

40

popular countdown encoder from Metasploit. That is, the initial payload was first
encoded using a countdown-like encoder, and the resulting shellcode was then
encoded using an alpha mixed-like encoder. The overall decryption process of the
shellcode is illustrated in Figure 6. Although such layered encryption using multiple
executable packers is commonly found in malware binaries, we are not aware of any
previous report of in-the-wild attacks employing doubly encrypted shellcode.

Figure 6: An illustration of the execution of the doubly encrypted shellcode found in
three of the attacks.

6. Conclusion

In this paper, we have presented our experiences from the deployment of network-
level emulation in research and educational networks. Nemu, our prototype
implementation, uses a CPU emulator to dynamically analyze every potential
instruction sequence in the inspected traffic and identify the execution behavior of
self-decrypting shellcode. After more than a year of continuous operation, nemu has
captured more than a million attacks that employed a highly diverse set of exploits,
while so far has not resulted to any false positives.

The attack activity observed in these three networks clearly shows that polymorphic
attacks are extensively used in the wild, although polymorphism is mostly employed
in its simplest for just for concealing restricted payload bytes. Considering the wide
availability of sophisticated polymorphic shellcode engines, this probably indicates
that attackers are satisfied with the effectiveness of current shellcode, and they do not
need to bother with more complex encryption schemes for evading existing network-
level defenses. However, attackers have also turned to the exploitation of less widely
used services and third-party applications, while we observed attacks employing
more sophisticated encryption schemes, such as doubly-encrypted shellcode. It is
thus not unlikely that in the future the use of advanced polymorphic shellcode
engines will be commonplace, as has already happened with executable packers,
which are nowadays widely used by malware.

Proceedings of the Fourth International
Workshop on Digital Forensics & Incident Analysis (WDFIA 2009)

41

7. Acknowledgments

Michalis Polychronakis and Evangelos Markatos are also with the University of
Crete. Kostas Anagnostakis is also with FORTH-ICS.

8. References

Bania, P. TAPiON, 2005. http://pb.specialised.info/all/tapion/.

Detristan, T., Ulenspiegel, T., Malcom, Y. and Underduk, M. Polymorphic shellcode engine
using spectrum analysis. Phrack, 11(61), Aug. 2003.

F-Secure. Calculating the Size of the Downadup Outbreak, Jan. 2009. http://www.f-
secure.com/weblog/archives/00001584.html.

K2. ADMmutate, 2001. http://www.ktwo.ca/ADMmutate-0.8.4.tar.gz.

The Metasploit Project. http://www.metasploit.com/.

Microsoft Corp. Microsoft Security Bulletin MS08-067 – Critical, Oct. 2008.
http://www.microsoft.com/technet/security/Bulletin/MS08-067.mspx.

Polychronakis,M., Markatos, E. and Anagnostakis, K. Network-level polymorphic shellcode
detection using emulation. In Proceedings of the Third Conference on Detection of Intrusions
and Malware & Vulnerability Assessment (DIMVA), July 2006.

Polychronakis,M., Markatos, E. and Anagnostakis, K. Emulation-based detection of non-self-
contained polymorphic shellcode. In Proceedings of the 10th International Symposium on
Recent Advances in Intrusion Detection (RAID), September 2007.

Provos, N., McNamee, D., Mavrommatis, P., Wang, K. and Modadug, N. The Ghost In The
Browser: Analysis of Webbased Malware. In Proceedings of the First Workshop on Hot
Topics in Understanding Botnets (HotBots), 2007.

Provos, N., Mavrommatis,P., Rajab, M. and Monrose, F. All your iFRAMEs point to us. In
Proceedings of the 17th USENIX Security Symposium, pages 1–16, 2008.

Rix. Writing ia32 alphanumeric shellcodes. Phrack, 11(57), Aug. 2001.

Szor, P. The Art of Computer Virus Research and Defense. Addison-Wesley Professional,
February 2005.

Wever, B. Alpha 2, 2004. http://www.edup.tudelft.nl/˜bjwever/src/ alpha2.c.

Yegneswaran, V., Barford, P. and Ullrich, J. Internet intrusions: global characteristics and
prevalence. In Proceedings of the 2003 ACM SIGMETRICS international conference on
Measurement and modeling of computer systems, 2003.

