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Abstract 

As state-of-the-art attack detection technology becomes more prevalent, attackers have started 
to employ evasion techniques such as code obfuscation and polymorphism to defeat existing 
defenses. We have recently proposed network-level emulation, a heuristic detection method 
that scans network traffic to detect polymorphic attacks. Our approach uses a CPU emulator to 
dynamically analyze every potential instruction sequence in the inspected traffic, aiming to 
identify the execution behavior of certain malicious code classes, such as self-decrypting 
polymorphic shellcode. In this paper, we present results and experiences from deployments of 
network-level emulation in production networks. After more than a year of continuous 
operation, our prototype implementation has captured more than a million attacks against real 
systems, while so far has not resulted to any false positives. The observed attacks employ a 
highly diverse set of exploits, often against less widely used vulnerable services, and in some 
cases, sophisticated obfuscation schemes. 
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1. Introduction 

The number of attacks against Internet-connected systems continues to grow at 
alarming rates (Provos et al., 2007, Yegneswaran et al., 2003). Along with the more 
recently popularized client-side attacks that exploit vulnerabilities in users’ software 
such as browsers and media players (Provos et al., 2008), remote code execution 
vulnerabilities continue to plague even the latest versions of popular OSes and server 
applications (Microsoft Corp. web site, 2008) and are effectively being exploited by 
malware, resulting in millions of infected hosts (F-Secure web site, 2009). 

Besides the constantly increasing number of security incidents, we have also been 
witnessing a steady increase in attack sophistication and diversity. Motivated by the 
illicit financial gain against their victims, cyber-criminals constantly try to improve 
the effectiveness and evasiveness of their attacks, with the aim to compromise as 
many systems as possible and keep them under control for as long as possible. As 
detection mechanisms improve, attackers employ increasingly sophisticated methods 
to evade them. Techniques such as code obfuscation and polymorphism (Szor, 2005) 
pose significant challenges to existing network-level detectors. 
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Using polymorphism, the code in the attack vector—which is usually referred to as 
shellcode—is mutated so that each instance of the same attack acquires a unique byte 
pattern, thereby making fingerprinting of the whole breed very difficult. Polymorphic 
shellcode engines (Metasploit Web Site, 2009, Bania 2005, Detristan et al., 2003, 
K2, 2001, Rix, 2001, Wever, 2004) create different mutations of the same initial 
shellcode—which is also known as the payload—by encrypting it with a different 
random key, and prepending to it a decryption routine that on runtime decrypts and 
executes the encrypted payload. Since the decryption code itself cannot be encrypted, 
advanced polymorphic encoders also mutate the exposed part of the shellcode using 
metamorphism (Szor, 2005). 

Accurate attack fingerprinting is getting increasingly important for the already 
inherently hard problem of identifying previously unknown attacks, also known as 
zero-day attacks, while trying to minimize the rate of false positives. A major 
outstanding question in security research and engineering is thus whether we can 
proactively develop the tools needed to contain advanced polymorphic attacks. 

Along with the several research efforts towards this goal, we have recently proposed 
network-level emulation (Polychronakis et al., 2006, Polychronakis et al., 2007), a 
passive network monitoring approach for the detection of zero-day polymorphic 
attacks. In contrast to previous work, network-level emulation uses a CPU emulator 
to dynamically analyze every potential instruction sequence in the inspected traffic, 
aiming to identify the execution behavior of certain malicious code classes, such as 
self-decrypting polymorphic shellcode. Network-level emulation does not rely on 
any exploit or vulnerability specific signatures, which allows the detection of 
previously unknown attacks, while the actual execution of the attack code on the 
emulator makes the detector robust to evasion techniques such as self-modifying 
code. Furthermore, each input is inspected autonomously, making the approach 
effective against targeted attacks. 

We have deployed our prototype implementation, called nemu, in research and 
educational networks across Europe. After more than a year of continuous operation, 
nemu has detected more than a million attacks against real systems in the monitored 
networks, while so far has not resulted to any false positives. In this work, we present 
an analysis of more than 1.2 million polymorphic code injection attacks against real 
Internet hosts—not honeypots—detected over the course of more than 20 months in 
the above deployments. Besides common exploits against popular OS services 
associated with multiple well known vulnerabilities, we witnessed sporadic attacks 
against less widely used services and third-party applications. At the same time, 
although the bulk of the attacks use naive encryption or polymorphism techniques, 
we observed a few attacks employing more sophisticated obfuscation schemes. 

2. Network-level Emulation 

We briefly describe some aspects of the network-level emulation detection 
technique. The interested reader is referred to our previous work (Polychronakis et 
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al., 2006, Polychronakis et al., 2007) for a thorough description of the approach and 
its implementation details. 

The principle behind network-level emulation is that the machine code interpretation 
of arbitrary data results to random code, which, when it is attempted to run on an 
actual CPU, usually crashes soon, e.g., due to the execution of an illegal instruction. 
In contrast, if some network request actually contains polymorphic shellcode, then 
the shellcode runs normally, exhibiting a certain detectable behavior, as illustrated in 
Figure 1. 

 

Figure 1: Overview of network-level emulation.  

After TCP stream reassembly, each network request is interpreted as machine code 
and is loaded on a CPU emulator. The execution of the random code corresponding 
to a benign request usually ends abruptly after a few instructions, while the execution 
of an actual polymorphic shellcode exhibits a certain detectable behavior. 

Nemu inspects the client-initiated data of each network flow, which may contain 
malicious requests towards vulnerable services. Any server-initiated data, such as the 
content served by a web server, are ignored. For TCP packets, the application-level 
stream is reconstructed using TCP stream reassembly. In case of large client-initiated 
streams, e.g., due to file uploads, only the first 64KB of the stream are inspected. 
Each input is mapped to a random memory location in the virtual address space of an 
IA-32 emulator, as shown in Figure 2. Since the exact location of the shellcode in the 
input stream is not known in advance, the emulator repeats the execution multiple 
times, starting from each and every position of the stream, although in certain cases 
some the execution of some code paths can be skipped to optimize runtime 
performance (Polychronakis et al., 2007). 

Before the beginning of a new execution, the state of the CPU is randomized, while 
any accidental memory modifications in the addresses where the attack vector has 
been mapped to are rolled back after the end of each execution. Since the execution 
of random code sometimes may not stop soon, e.g., due to the accidental formation 
of loop structures that may execute for a very large number of iterations, if the 
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number of executed instructions in some execution chain reaches a certain execution 
threshold, then the execution is terminated. 

 

Figure 2: A typical execution of a polymorphic shellcode using network-level 
emulation. 

The execution of polymorphic shellcode is identified by two key runtime behavioral 
characteristics: the execution of some form of GetPC code, and the occurrence of 
several read operations from the memory addresses of the input stream itself, as 
illustrated in Figure 2. The GetPC code is used by the shellcode for finding the 
absolute address of the injected code, which is mandatory for subsequently 
decrypting the encrypted payload, and involves the execution of an instruction from 
the call or fstenv instruction groups (Polychronakis et al., 2006). 

External Internal 
Network Total # 

attacks 
#attacks #srcIP #dstIP #attacks #srcIP #dstIP 

NRN1 1240716 396899 (32.0%) 10014 769 843817 (68.0%) 143 331572 

NRN2 12390 2617 (21.1%) 1043 82 9773 (78.9%) 66 4070 

NRN3 1961 441 (22.5%) 113 49 1520 (77.5%) 8 1518 

EDU 20516 13579 (66.2%) 3275 410 6937 (33.8%) 351 2253 

Table 1: Number of captured attacks from four deployments of nemu. 

3. Data Set 

Our analysis is based on the attacks captured by nemu in three deployments in 
European National Research Networks (referred to as NRN1-3) and one deployment 
in a public Educational Network in Greece (referred to as EDU). In each installation, 
nemu runs on a passive monitoring sensor that inspects all the traffic of the access 
link that connects the organization to the Internet. The sensors were continuously 
operational for more than a year, except some occasional downtimes. The exact 
duration of each deployment was March 2007 – October 08 for NRN1 and EDU, and 
March 2007 – February 2008 for NRN2 and NRN3. Details about the exact number 
of detected attacks in each deployment, along with the number of attack sources and 
destinations, is shown in Table 1. In these four deployments, nemu collectively 
captured more than 1.2 million attacks targeting real production systems in the 
monitored networks. 
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We differentiate between external attacks, which originate from external IP 
addresses and target hosts within the monitored network, and internal attacks, which 
originate from hosts within the monitored networks. Internal attacks usually come 
from infected PCs that massively attempt to propagate malware in the local network 
and the Internet. We should note that due to NAT, DHCP, and the long duration of 
the data collection, a single IP may correspond to more than one physical computer. 

4. Overall Attack Activity 

As shown in Table 1, from the 1.240.716 attacks detected in NRN1, about one third 
of them were launched from 10.014 external IP addresses and targeted 769 hosts 
within the organization. The bulk of the attacks originated from143 different internal 
hosts, targeting 331.572 different active hosts across the Internet. Interestingly, 116 
of the 143 internal hosts that launched attacks are also among the 769 victim hosts, 
indicating that possibly some of the detected attacks were successful. 

 

Figure 3: Overall external attack activity. Although the bulk of the attacks 
target well known vulnerable services, there are also sporadic attacks against 

less widely used services. 

The overall attack statistics for NRN2 and NRN3 are similar to NRN1, but the 
number of detected attacks is orders of magnitude smaller, due to the smaller attack 
surface of infected or potentially vulnerable internal hosts that launched or received 
attacks. In contrast to the three NRNs, about two thirds of the attacks captured in the 
EDU deployment originated from external hosts. 

An overall view of the external and internal attack activity for all deployments is 
presented in Figure 3 and Figure 4, respectively. In both figures, the upper part 
shows the attack activity according to the targeted port, while the bottom part shows 
the number of attacks per hour. For the targeted ports, the darker the color of the dot, 
the larger the number of attacks targeting this port in that hour. There are occasions 
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with hundreds of attacks in one hour, mostly due to attack bursts from a single source 
that target all active hosts in neighboring subnets. 

 

Figure 4: Overall internal attack activity. 

5. Attack Analysis 

As expected, the most highly attacked ports for both internal and external attacks 
include ports 135, 139, and 445, which correspond to Windows services that have 
been associated with multiple vulnerabilities and are still being highly exploited in 
the wild. Actually, the second most attacked port is port 2967, which is related to an 
exploit against a popular corporate virus scanner that happened to be installed in 
many hosts of the monitored networks. As shown in Figure 4, several of these hosts 
got infected before the patch was released and were constantly propagating the attack 
for a long period. Other commonly attacked services include web servers (port 80) 
and mail servers (port 25). 

It is interesting to note that there also exist sporadic attacks to many less commonly 
attacked ports like 3050, 5000, and 41523. With firewalls and OS-level protections 
now being widely deployed, attackers have started turning their attention to third-
party services and applications, such as virus scanners, mail servers, backup servers, 
and DBMSes. Although such services are not very popular among typical home 
users, they are often found in corporate environments, and most importantly, they 
usually do not get the proper attention regarding patching, maintenance, and security 
hardening. Thus, these services have become attackers’ next target option for remote 
system compromise, and as the above results show, many such exploits have been 
actively used in the wild. Nemu scans the traffic towards any port and does not rely 
on exploit or vulnerability specific signatures, thus it is capable to detect 
polymorphic attacks destined to even less widely used or “forgotten” services. 

Overall, the captured attacks targeted 26 different ports. The number of attacks per 
port is shown in Figure 5 (dark bars). A large number of attacks targeted port 1025, 
attempting to exploit the Microsoft Windows RPC malformed message buffer 
overflow vulnerability. Less commonly attacked services include POP3 and IMAP 
servers (ports 110 and 143), Oracle XDB FTP servers (port 2100), the Windows 
Internet Naming Service (WINS) (port 42), Microsoft SQL servers (port 1433), 
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Creative Server (port 453), ShixxNOTE 6.net messenger (port 2000), Microsoft 
Message Queuing service (2103), Borland InterBase database server (port 3050), and 
the CA BrightStor Agent for Microsoft SQL Server (port 41523). The attack against 
port 5000 was related to a vulnerability in the Windows XP Universal Plug and Play 
implementation, while the attack against port 6881 attempted to exploit a vulnerable 
P2P file sharing program. The single attack against port 5554 was launched by 
W32.dabber, a worm that propagates by exploiting a vulnerability in the FTP server 
started by W32.Sasser and its variants. Other incidents involving vulnerable malware 
include attacks against W32.Sasser's FTP server (port 1023) and the WinHole trojan 
(port 1082). 

Figure 5: Number of attacks and unique shellcodes for different ports. 

For each attack, we computed theMD5 hash of the initial shellcode as seen on the 
wire and plotted the number of unique shellcodes per port in Figure 5 (light bars). 
Comparing the dark and light bars, we see that in some cases the number of unique 
shellcodes is quite smaller than the number of attacks. If truly polymorphic shellcode 
were used, we would expect the number of shellcodes to be equal to the number of 
attacks, since each instance of a polymorphic shellcode is different than any other 
instance. However, in most attacks the encryption scheme is very simple, and for the 
same malware family, the generated shellcodes usually have been encrypted using 
the same key and carry the same decryption routine. Besides code obfuscation, even 
such naively applied encryption is convenient for the avoidance of NULL, CR, LF, 
and depending on the exploit, other restricted bytes that should not be present in the 
attack vector, since this can be taken care of by the encryption engine (Metasploit 
Web Site, 2009). 

Three of the attacks against port 3050 are particularly interesting due to the increased 
sophistication of the encryption scheme used. The shellcode is encrypted with a 
variant of the alpha mixed encoder from Metasploit, which produces 
alphanumeric mixed-case shellcode, with some differences in the GetPC code (the 
decryption loops are identical). The interesting aspect of these particular attacks is 
that the decrypted payload produced by the alphanumeric shellcode is again an 
instance of a self-decrypting shellcode, this time generated by a  variant of the 
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popular countdown encoder from Metasploit. That is, the initial payload was first 
encoded using a countdown-like encoder, and the resulting shellcode was then 
encoded using an alpha mixed-like encoder. The overall decryption process of the 
shellcode is illustrated in Figure 6. Although such layered encryption using multiple 
executable packers is commonly found in malware binaries, we are not aware of any 
previous report of in-the-wild attacks employing doubly encrypted shellcode. 

 

Figure 6: An illustration of the execution of the doubly encrypted shellcode found in 
three of the attacks. 

6. Conclusion 

In this paper, we have presented our experiences from the deployment of network-
level emulation in research and educational networks. Nemu, our prototype 
implementation, uses a CPU emulator to dynamically analyze every potential 
instruction sequence in the inspected traffic and identify the execution behavior of 
self-decrypting shellcode. After more than a year of continuous operation, nemu has 
captured more than a million attacks that employed a highly diverse set of exploits, 
while so far has not resulted to any false positives. 

The attack activity observed in these three networks clearly shows that polymorphic 
attacks are extensively used in the wild, although polymorphism is mostly employed 
in its simplest for just for concealing restricted payload bytes. Considering the wide 
availability of sophisticated polymorphic shellcode engines, this probably indicates 
that attackers are satisfied with the effectiveness of current shellcode, and they do not 
need to bother with more complex encryption schemes for evading existing network-
level defenses. However, attackers have also turned to the exploitation of less widely 
used services and third-party applications, while we observed attacks employing 
more sophisticated encryption schemes, such as doubly-encrypted shellcode. It is 
thus not unlikely that in the future the use of advanced polymorphic shellcode 
engines will be commonplace, as has already happened with executable packers, 
which are nowadays widely used by malware. 
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