
Chapter 1 – Network Technologies

105

Traffic Modelling and Simulation Techniques for
Evaluating ACL Implementation

V.Grout, J.N.Davies and J.McGinn

Centre for Applied Internet Research (CAIR)
University of Wales, NEWI, Wrexham, UK

e-mail: {v.grout|j.n.davies|j.mcginn}newi.ac.uk

Abstract

This paper presents a modelling and simulation framework for analysing Access Control List
(ACL) implementation on Internet devices. It uses the established modelling/simulation
techniques of abstraction and simplification to isolate the essential components of the system
from peripheral issues. As a case study, the viability of a simple real-time optimisation
technique is demonstrated.

Keywords

Internet traffic, Access control lists, Packet classification, ACL optimisation

1. Introduction: Modelling Internet Traffic

Internet traffic flow has complex characteristics, both in scale and structure.
Modelling and simulating traffic can, consequently, be troublesome. However, in
certain circumstances, not all traffic features are relevant to the simulation and a
degree of simplification is appropriate. This paper considers a model of Internet
traffic, as sequences of packets, applied to the simulation of the behaviour of Access
Control Lists (ACLs) using different implementations. The nature and structure of
ACLs are described, together with the packets they process. The essential elements
of the simulation are identified and relevant parameters are introduced. An extensive
case study with results is given in conclusion.

There has been substantial discussion of the nature of Internet traffic over the years,
(Paxson and Floyd, 1995; Paxson, 1999) for example. One of the few coherent
conclusions, albeit it an obvious one, is that Internet traffic is very complex indeed.
Analysing traffic on a network over time shows both a level of self-similarity
(Leyland et al., 1994; Rezaul and Grout, 2007) and an effective randomness (Dang et
al., 1999; Jerkins and Wang, 1999) on unpredictable scales. This makes the effective
modelling and simulation of network activity extremely difficult in any general form.
It is true that some fairly sophisticated network simulators exist, (ns-2, 2007; cnet,
2007; Cisco, 2007) for example, but the power of these tools lies primarily in their
scale rather than their fine-tuning. Although most network protocols are supported,
for example, it is still hard to imitate the subtleties of real network traffic under
changing conditions. None are particularly straightforward to use and, to date,
successful simulations using such tools have tended to be small (Tan et al., 2006;

Proceedings of the Seventh International Network Conference (INC2008)

106

Zhu and Roy, 2004). Also, although sources of ‘real’ network traffic for
experimentation are to be found (Kos et al., 2003; Abilene, 2007), they are not
numerous and, beyond a basic description of form (time, place, traffic type, etc.) do
not offer obvious means of identifying traffic characteristics (distribution,
randomness, stability, self-similarity, etc.). Results from network simulations might
reasonably be expected to vary with these traffic characteristics and, without such
knowledge, will have limited value.

However, a completely generic network model is often unnecessary. Depending
upon the purpose of the simulation, certain traffic characteristics will be significant;
others not. Dispensing with the unnecessary network characteristics can often
simplify the traffic model and allow relevant parameters to be used to fine-tune the
simulation as required. This paper is concerned with the implementation of Internet
traffic filters, otherwise know as Access Control Lists (or ACLs). An ACL processes
traffic as a sequence of packets, and is itself a sequence of rules, as described in
sections 2 and 3. Modelling the interaction of two such sequences proves to be a
comparatively simple process in which most characteristics of the packets and rules
may be ignored.

The remainder of the paper is organised as follows: Section 2 introduces the
essential role and behaviour of ACLs in simple, practical terms. This intuitive model
is then extended and formalised in sections 3 and 4. Section 3 derives an appropriate
model for the rules of an ACL processing a sequence of packets before section 4
introduces the relevant traffic characteristics in this environment, which prove to be
few. Some parameters then depend on the method of ACL implementation. This is
considered generically in section 5 and illustrated through an example in section 6.
Section 7 concludes briefly.

2. An Overview of ACL Purpose and Structure

We begin with a very brief description of context. An internetwork (internet) is a
‘network of networks’. (The Internet, with which we are familiar, is conventionally
written with a capital.) Key devices, known as routers, switch, or route,
communications traffic, usually in the form of discrete packets, between networks.
The primary function of a router is to forward each packet to the most suitable
device, typically another router, at each step of the journey. However, a vital
secondary role is to consider whether a given packet should be passed at all,
according to a set of tests, or rules, against which it is matched.

A typical rule, in the syntax of the Cisco Internetwork Operating System (IOS)
(Colton, 2002), is
 access-list 101 deny icmp any 10.0.0.0 0.255.255.255 echo-reply

which states that ICMP echo-reply packets from any source to the network
10.0.0.0 are to be blocked at this point. The first part of the rule simply assigns it
to access list 101 (and may be ignored when discussing single lists in isolation.).

Chapter 1 – Network Technologies

107

An access list, or Access Control List (ACL), is then a sequence of such rules
designed to implement a given objective or set of objectives. ACLs can be used for
security purposes, simply to pass or block packets, or as filters for more sophisticated
policies such as traffic shaping, address translation, queuing or encryption
(Syngress, 2002). A packet may be matched against several ACLs on a single router
and many more on its complete journey from source to destination. Inefficiently
implemented ACLs can add significantly to packet delay and even small ACLs will
contribute to this latency simply by their aggregation across several routers.

An example of a complete ACL is given in Figure 1. Other than the ACL
assignment, a rule may consist of up to five parts: the permit or deny type, the
protocol, a source address, destination address and a flag function (as in the echo-
reply parameter above) for fine-tuning. Each parameter may be a single value or a
range of allowable matches. For example, the any parameter above matches all
source addresses whilst the 0.255.255.255 parameter matches destination
addresses in the 10.0.0.0 network. The absence of any term, such as an address,
a protocol or flag, indicates the rule will match a packet with any such values –
provided those fields that are present are matched.

access-list 101 permit tcp 192.168.212.0 0.0.0.255 10.0.0.0 0.255.255.255 eq telnet
access-list 101 permit tcp 192.168.212.0 0.0.0.255 10.0.0.0 0.255.255.255 eq ftp
access-list 101 permit tcp 192.168.212.0 0.0.0.255 10.0.0.0 0.255.255.255 eq http
access-list 101 deny ip 192.168.212.0 0.0.0.255 10.0.0.0 0.255.255.255
access-list 101 permit icmp any 10.0.0.0 0.255.255.255 administratively-prohibited
access-list 101 permit icmp any 10.0.0.0 0.255.255.255 echo-reply
access-list 101 permit icmp any 10.0.0.0 0.255.255.255 packet-too-big
access-list 101 permit icmp any 10.0.0.0 0.255.255.255 time-exceeded
access-list 101 permit icmp any 10.0.0.0 0.255.255.255 unreachable
access-list 101 permit icmp 172.16.20.0 0.0.255.255
access-list 101 deny icmp any any
access-list 101 permit ip 202.33.42.0 0.0.0.255 any
access-list 101 permit ip 202.33.73.0 0.0.0.255 any
access-list 101 permit ip 202.33.48.0 0.0.0.255 any
access-list 101 permit ip 202.33.75.0 0.0.0.255 any
access-list 101 deny ip 202.33.0.0 0.0.255.255 any
access-list 101 deny tcp 210.120.122.0 0.0.0.255 10.2.2.0 0.255.255.255 eq www
access-list 101 deny tcp 210.120.183.0 0.0.0.255 10.2.2.0 0.255.255.255 eq www
access-list 101 deny tcp 210.120.114.0 0.0.0.255 10.2.2.0 0.255.255.255 eq www
access-list 101 deny tcp 210.120.175.0 0.0.0.255 10.2.2.0 0.255.255.255 eq www
access-list 101 deny tcp 210.120.136.0 0.0.0.255 10.2.2.0 0.255.255.255 eq www
access-list 101 deny tcp 210.120.177.0 0.0.0.255 10.2.2.0 0.255.255.255 eq www
access-list 101 permit tcp any 10.2.2.0 0.255.255.255 eq www
access-list 101 deny tcp any any eq www
access-list 101 permit tcp any any
access-list 101 deny ip 195.10.45.0 0.0.0.255 any
access-list 101 permit ip any any
{access-list 101 deny all} {implicit}

Figure 1: A typical Access Control List (ACL)

The interpretation of an ACL is that its rules are considered as being processed in
sequential order from the top. That is, each incoming packet is tested against the
first rule; if it matches, it is passed or blocked accordingly and no further rules are
considered; otherwise it is tested against the second rule, and so on. There is an
implicit deny all rule at the end of each ACL to block all packets not otherwise
matched.

Proceedings of the Seventh International Network Conference (INC2008)

108

There are three further points to make in overview. Firstly, this model of an ACL as
a sequence of rules, considered in order, is only a question of interpretation: it
should not be assumed that the ACL is actually processed sequentially within the
device hardware or software (see section 5). Secondly, taking this interpretation of
ACL structure, the order of the rules is crucial: an inherent dependency between rules
prohibits arbitrary reordering. For example, in Figure 2, an IP packet from the
network 192.168.16.0 to the network 10.0.0.0 will match both rules shown.
The packet will be passed in 2(a) but blocked in 2(b). Clearly then, rules may not be
reordered if this changes the underlying intention of the policy. Thirdly, not all rules
are equally likely to match packets: rules with larger parameter ranges (or indeed
absent parameters) may match more packets and rule hit-rate will vary among them.
Also, different rules will become more or less significant as traffic (packet)
characteristics change so these same hit-rates will be dynamic. These concepts are
developed in the next section and used in the case study in section 6.

: :
: :

access-list 102 permit ip 192.168.16.0 0.0.0.255 any
: :
: :

access-list 102 deny ip any 10.0.0.0 0.255.255.255
: :
: :

{access-list 102 deny all} {implicit}

: :
: :

access-list 102 deny ip any 10.0.0.0 0.255.255.255
: :
: :

access-list 102 permit ip 192.168.16.0 0.0.0.255 any
: :
: :

{access-list 102 deny all} {implicit}

Access list 2(b)

Access list 2(a)

Figure 2: Dependent rules

3. Modelling ACL Structure

Where appropriate in this paper, abbreviations are used as follows: ∃, ‘there is’ or
‘there exists’; ∀, ‘for all’ or ‘for every’; ∧, ‘and’; ⇔, ‘if and only if’; and →, ‘such
that’. We also use the terms format and protocol in a precise manner: format refers
to the layout of packets and rules in any given system whereas protocol implies a
data/traffic type that may be identified within it. Then define A* to be the set of all
addresses available within a given system, define B* to be the set of all protocols
recognised by the system and define F* = {0, 1}w to be the set of w flag vectors ({0,
1} w-tuples acting on B*) valid for the system. For completeness, X* represents the
set of payloads.

Chapter 1 – Network Technologies

109

3.1. Packets, rules and policies

For a given format, a packet, pk = (Sak, Dak, bk, fk, Xk), is defined by its constituents:
Sak ∈ A*, the source address; Dak ∈ A*, the destination address; bk ∈ B*, the
protocol; fk ∈ F*, the flags vector and Xk ∈ X*, the payload. A rule, ri = (ti, SAi, DAi,
Bi, σi), consists of: a type, ti ∈ {permit, deny}, SAi ⊆ A*: the source range, DAi ⊆ A*:
the destination range, Bi ⊆ B*: the protocol range, and a flags predicate, σi: F* a
{true, false}. Only ti is a required component in all syntaxes. If any other
components are absent then SAi = A*, DAi = A*, Bi = B* or σi ≡ true by default.

A packet, pk, matches a rule, ri (for which we write pk ∇ ri), if its addresses and
protocols are within the range of the rule and if its flags vector satisfies the rule’s
flags predicate. That is,

 pk ∇ ri ⇔ (Sak ∈ SAi) ∧ (Dak ∈ DAi) ∧ (bk ∈ Bi) ∧ σi (fk), (1)

in which case the packet will be permitted or denied according to ti.

A policy, Z = [r1, r2, ..., rn] is an (ordered) sequence of n rules to achieve some
purpose. The last rule implicitly denies all traffic; that is, tn = deny, SAn = A*, DAn =
A*, Bn = B* and σn ≡ true.

3.2. Dependencies and redundancies

A dependency exists between two rules, ri and rj, if they are of opposite type and it is
possible that there exists a packet, pk, that matches both rules ((pk ∇ ri) ∧ (pk ∇ rj));
that is ri and rj are dependent if

 (ti ≠ tj) ∧ ∃ pk → (Sak ∈ SAi ∩ SAj) ∧ (Dak ∈ DAi ∩ DAj) (2)
∧ (bk ∈ Bi ∩ Bj) ∧ σi(fk) ∧ σj(fk).

Eliminating the packet, pk, from this expression, allows a {0, 1} dependency matrix,
D = (dij: 1≤i,j≤n), to be defined:

 dij ⇔ (ti ≠ tj) ∧ (SAi ∩ SAj ≠ ∅) ∧ (DAi ∩ DAj ≠ ∅) (3)
∧ (Bi ∩ Bj ≠ ∅) ∧ (Σi ∩ Σj ≠ ∅),

where Σi ⊆ F* is the subset of flag vectors satisfying σi.

If dij = 1 then the order of rules i and j must be preserved if the behaviour of the
policy is to be maintained. On this basis, the dependency index, a normalised
measure of rule interdependency, for a set of n rules, can be defined as:

 DI = ∑∑
−

= +=−

1

1 1)1(
2 n

i

n

ij
ijd

nn
 (4)

and is used in section 6. DI = 0 means no dependent rules; DI = 1 means all rules
dependent upon all others. Higher values of DI constrain rule order more tightly.

A rule, rj, in a policy, Z, is redundant (written ri rj) if there exists a rule, ri (i < j),
in Z, such that all packets matching rj will be matched by ri.

Proceedings of the Seventh International Network Conference (INC2008)

110

 ri rj ⇔ (ti = tj)∧ (SAi ⊇ SAj) ∧ (DAi ⊇ DAj) ∧ (Bi ⊇ Bj) ∧ (Σi ⊇ Σj). (5)

A redundant rule may be removed from the policy without changing its purpose.

A rule, ri, in a policy, Z, is potentially redundant if there exists a rule, rj (i < j), in Z,
such that all packets matching ri will be matched by rj. A redundant rule may be
removed from the policy without changing its purpose provided that no other rules
between ri and rj are dependent upon rj; that is,

 ri rj ⇔ (ti = tj)∧ (SAi ⊆ SAj) ∧ (DAi ⊆ DAj) ∧ (Bi ⊆ Bj) (6)
∧ (Σi ⊆ Σj) ∧∀ v → (i < v < j), dvj = 0.

Both forms of redundancy include the case, ri = rj.

Finally, and in brief, rules, rα, rβ, rγ .., are said to be co-redundant if there can be
found a rule, ri (i < α, β, γ, ..), such that ri can replace rα, rβ, rγ ... Equivalent
definitions may be derived for co-redundancy with respect to source/destination
address and protocol/flags, and for potential co-redundancy.

A useful tutorial approach to the detection and management of redundancies is given
in (Qian et al., 2001). (Al Shaer and Hamed, 2004) gives an updated treatment.
Although interesting, these concepts are not central to this work. The models
discussed in this paper apply whether or not the policy, Z = [r1, r2, ..., rn], contains
redundancies.

3.3. Hit-rates and latencies

An access list, or simply list, L, implements a policy, Z = [r1, r2, ..., rn], if it is a
permutation of the rules of Z such that the order of dependencies is preserved. Let
ri(L) be the rule at position i in L. A special case of a list implementing a policy, Z,
is the identity list, IZ = [r1, r2, ..., rn], for which ri(IZ) = ri ∀ i (1≤i≤n).

The hit-rate, h(ri(L),T), of rule ri in a list L, is the probability that a packet from a
traffic flow T will match ri in L. Hit-rates can be calculated dynamically using
counters within the IOS or hardware (Cisco, 2002) (Cisco, 2003).

The latency, λ(ri), of a rule ri is the time taken to (independently) process ri. This
may be calculated from the length of a rule, the nature of the protocols involved or
taken from stored tables. In the implementation of some systems, latencies may be
constant for all rules (see section 5.1) but this is not assumed generally in this paper.

4. Modelling Traffic Characteristics

Using the definition of a packet from section 3.1, a packet stream, Pq = [p1, p2, ...,
pq], is simply a sequence of q packets. However, there are two other parameters
necessary for a complete description of traffic flow: the length of each packet and the
inter-arrival time. Define φk to be the length of packet k (largely dependent upon the
payload Xk) and ψk to be the time difference between the arrival (or passing) of
packets k and k+1. (ψ0 = 0 by default.). Then, the sequences Φq = [φ1, φ2, ..., φq]

Chapter 1 – Network Technologies

111

and Ψq = [ψ1, ψ2, ..., ψq] describe the distributions of packet lengths and inter-arrival
times respectively for a sequence of q packets. No assumptions are made with
regard to the nature of these distributions (Paxson and Floyd, 1995) (Paxson, 1999)
(Rezaul, 2007). The vector triplet Tq = (Pq, Φq, Ψq) describes fully the behaviour of
the traffic flow for q packets and, for sufficiently large q, we simply refer to the
traffic, T. This will provide a full model of traffic flow for any purpose.

… k–1 k k+1 …

ψk-1
φk

Sak Dak bk fk Xk

ψk

Figure 3: A generic model of traffic (packet) flow

However, this completely generic model may be unnecessarily complex for specific
purposes. In the case of packets being matched against ACLs, the matching occurs
on (or shortly after) the arrival of each packet. The time between the arrival of
packets k and k+1 is given by ωk = φk+ψk and, if Ωq = [ω1, ω2, ..., ωq] as before,
then the pair, Tq = (Pq, Ωq) or T = (P, Ω) adequately describes the traffic flow.
Further simplifications are possible depending upon the nature of the ACL
implementation and are discussed in the sections that follow.

5. Methods for Implementing ACLs

Space here permits only a brief overview of ACL implementation and optimisation.
See Qian et al. (2001), Al-Shaer and Hamed (2004), Varghese (2005) and Grout et
al. (2007a and 2007b) for a fuller treatment. There are essentially three basic
approaches to implementation – although hybrids are also possible. Each permits a
different form and level of simplification to the ACL/traffic, or rule/packet, model.

5.1. Implementation in TCAMs

A Content Addressable Memory (CAM) is effectively Random Access Memory
(RAM) in reverse. Rather than accepting an address and returning the data at that
location, a CAM can take an item of data and return the address at which it is to be
found. In principle, the operation constitutes a single fetch operation. A Ternary
CAM (TCAM) permits wildcard bit matches along with binary ones and zeroes and is
consequently ideal for allowing matches within ranges of addresses, protocols, etc.
of the form to be found within ACL rules. CAMs and TCAMs can be used for
various forms of packet look-up including routing tables as well as ACLs. In a
routing table, the longest matching entry is returned; in an ACL, the first. This is the
fastest but most expensive form of implementation. Not only is the immensely

Proceedings of the Seventh International Network Conference (INC2008)

112

complex circuitry potentially restrictive; even cooling requirements can be an issue
on large platforms (McKeown, 2006).

TCAM implementation is also the most straightforward in terms of modelling. The
size of the TCAM will be n × m, where there are n rules and m is the maximum
length of each rule i - dependent upon the sizes of the parameters SAi, DAi, Bi and σI
in the format for a given system. The time taken to process any packet k is a
constant, CTCAM (= λ(ri) from section 3.3) and, provided this is less than ωk = φk+ψk,
there is no instantaneous potential for disruption. In general, for a packet stream of
length q, provided

 ∑
=

≤
q

k
kTCAMqC

1
ω , (7)

there will be no net latency. In the worst case, with an unbroken stream of packets,
ψk = 0 ⇒ ωk = φk, ∀k and this becomes

 ∑
=

≤
q

k
kTCAMqC

1
ϕ . (8)

5.2. Implementation as trees or tries

The concept of arranging ACL rules as a searchable tree structure (binary or
otherwise) is a fairly obvious one. Assuming a binary tree arrangement, the first
matching rule can be found in O(2η) steps, where η is the length of the packet header
in the given format and, although there are some mechanisms for improving this
performance in special cases, there will also be non-trivial memory requirements as a
result. On this basis, and assuming the worst-case scenario of the previous
subsection, we require

 ∑
=

≤
q

k
kTREE

n qC
1

2 ϕ (9)

(where CTREE = 2-n λ(ri)) for there to be no net latency for q packets.

However, in practice, rules are better organised as tries. A trie (from ‘retrieval’) is
essentially a tree with an array of pointers at each node, indicating subtries. There is
a pointer at each node for each possible value. The bits of each rule are thus stored
on the braches of the trie, not the nodes. Rule look-up can be performed much faster
on tries than trees, in a time proportional to the number of header fields in fact.
Again, there are storage requirements but this can be restricted to O(n), for the
general case, by special techniques involving synergies of hardware and software.
The trie equivalent of equation (9) thus becomes

 ∑
=

≤
q

k
kTRIEqC

1
4 ϕ (10)

(CTRIE = ¼λ(ri)). See Varghese (2005) for a comprehensive description of trees and
tries applied to packet look-up.

Chapter 1 – Network Technologies

113

5.3. Implementation as linear lists

The simplest, but generally regarded as least efficient, approach to ACL
implementation, is to process the rules sequentially as a linear list, precisely the
original interpretation of rule order. Using the definitions of hit-rates and latencies
from section 3.3, define the cumulative latency, κ(ri(L)), of ri in a list L, to be the
time taken to process ri and all rules preceding it in L. So

 ∑
=

=
i

i LrLr
1

))(())((
υ

υλκ . (11)

The expected latency, E(L,T), of a list L, in traffic T, is then given by

 ∑ ∑∑
= ==

==
n

i

i

i

n

i
ii LrTLrhLrTLrhTLE

1 11
))(()),(())(()),((),(

υ
υλκ . (12)

In a simple sense, for q packets, we require that

 ∑
=

≤
q

k
kTLE

1
),(ϕ , (13)

as before, to avoid latency. However, the value of this approach is that rules
arranged as a linear list may be reordered to lower the value of E(L,T), provided
such a rearrangement does not violate any rule dependencies. In general, for a given
traffic flow, T, we require to find (or approximate) the list, L, implementing a policy,
Z, that minimises E(L,T). Unfortunately, attempting to find such a minimising order
will, of course, itself have some processing cost. In fact it is shown by Grout et al.
(2007a) that the problem is NP-complete and only heuristics, not exact methods are
viable. However, even for this effort to be worthwhile, the potential reduction in
latency must be large enough to warrant running any optimising algorithm. It
transpires that this potential benefit can be examined effectively and accurately by a
further simplification to our traffic model as discussed in the next section.

6. Case Study: Optimising a Linear List with a Simple Algorithm

A number of heuristics for minimising expected latency in a sequentially executed
ACL are given by Grout et al. (2007a). The most efficient algorithm of all (δ-opt) is
given (along with its full justification) in Grout et al. (2007b):

Step 1: Initialisation (on configuration/reconfiguration)
 for i := 1 to n do
 h(ri) := 1

Step 2: Promotion (on a match of rule ri)
 h(ri) := θh(ri); if (di-1 i =0) and h(ri)λ(ri-1) > h(ri-1)λ(ri) then
 Swap(ri-1, ri)

Proceedings of the Seventh International Network Conference (INC2008)

114

Step 3: Reduction (every DSIZE packets)
 for i := 1 to n do
 h(ri) := h(ri) / max j h(rj)

Figure 4: The δ-opt algorithm

The process works by increasing the hit-rate of the currently matched rule (by a
factor, θ) and promoting it one place in the list if the trade-off in expected latency is
positive. (The full calculations are to be found in Grout et al. (2005)) All hit-rates
are assumed equal when the list is originally defined (or redefined) by the network
administrator.

This is certainly a very simple and efficient algorithm. The linear (O(n)) Step 1 is
executed only once, as the list is defined or redefined – an infrequent event. Step
3 (also O(n)) executes at intervals to prevent buffer overflow (DSIZE is the size, in
bytes, of the registers holding hit-rates). Only the constant Step 2 executes for
each packet. Even so, it is not immediately clear that the latency savings from
running such an algorithm will justify its execution time. That this is actually so can
be demonstrated through further simulation.

6.1. Packet and Traffic Models

On initial consideration, generating traffic and ACLs for testing appears complicated
and difficult. Rules may differ considerably in some, fairly general ACLs, having
very diverse address ranges, protocols, flags, etc. and combinations of the same; in
other cases, where the role of an ACL is more focused, each rule may be only a
slight variant of the others. Traffic also is difficult to predict and model in any
generic sense: in principle, packets may be from anywhere, to anywhere, of any type
and characteristics. Worse still, is the question of the relationship between traffic
and an ACL. Different ACLs and their rules, depending on their purpose, may be
expected to match packets with varying degrees of success. For example, the key
rules in an ACL used to select traffic, within a local network, for address translation
will probably match many packets – precisely those within the range to be translated;
however, an ACL acting as a firewall – a safeguard - may have rules defining traffic
types or address ranges that rarely pass through it. Generating addresses, protocols
and flags for rules and packets to interact in any meaningful, realistic way will be
difficult indeed.

Fortunately, simulation at this level is unnecessary for our purposes. A large number
of the parameters from sections 3 and 4 can be combined into an essential form that
describes the interaction between rules and packets without needing to precisely
define their basic form. The key relationship between rule and packet lies not in the
detail of addresses, protocols and flags but in the rudimentary issues of how long a
rule takes to execute and how likely it is to be hit by a packet – taking into account
the key fact that packets in similar streams are likely to match the same rule.
Dependencies between rules must also not be overlooked since they prohibit
arbitrary rule reordering.

Chapter 1 – Network Technologies

115

Rule latencies (λ) and the dependency index (DI) have been defined already. All that
is required for what follows is a second value, the similarity index (SI), describing
the probability that any given packet matches the same rule as its predecessor. The
advantage of this approach over attempting to generate ‘real’ rules and packets is that
values of λ, DI and SI can be generated comprehensively and exhaustively at will -
allowing a complete set of results to be constructed for all types of ACL and traffic.
Values of λ, DI and SI for ‘real’ ACLs and traffic can be calculated simply enough
and the corresponding simulation results applied for prediction, etc. The process
proceeds as follows.

The simulation is based on an in-house numerical model, capable of generating
ACLs and traffic flows according to a given parameter set. For tested ACLs, the
number of rules (n) ranged from 10 to 10 000. Values of the dependency index, DI,
in the range 0 (no dependencies) to 1 (complete dependency) were used. For each
rule pair, (i,j), dependencies are randomised as dij = 1 with probability DI and dij = 0
with probability 1 - DI. Rule latencies were uniformly randomised from 0.5µs to
1.0µs. Actual values depend on the router hardware of course (Varghese, 2005) but
it is only relative values that are significant. (Routers that process packets faster will
also optimise faster.)

For traffic, the simulation is only slightly more sophisticated. The traffic simulator
generates packets with given probabilities of matching each rule in the list. At
intervals, these probabilities may change to reflect shifting traffic patterns. Within a
single traffic pattern, however, there is a certain probability that a packet is identical
to the previous one – or part of a similar stream - and matches the same rule.

So, at the start of the simulation, a value of the similarity index, SI, is set. Then a

match probability, ρi is randomised for each rule ri and normalised so that 1
1

=∑
=

n

i
iρ .

The first packet is generated, matching rule ri with probability ρi. Subsequent
packets match the same rule with probability SI, and otherwise match any rule
according to the match probabilities, ρi. Every q packets, the match probabilities, ρi,
are re-randomised.

6.2. Results

n and DI can be set to produce different types of ACL while q and SI vary to reflect
different types of traffic. As an example, Table 1 records simulated output from a
test with θ = 1.5 (from δ-opt), n = 1 000, DI = 0.25, q = 1 000 000 and SI = 0.75.
4 000 000 packets are generated in total, in four stages with varying profiles. Results
are reported every 100 000 packets.

Proceedings of the Seventh International Network Conference (INC2008)

116

ACL length (n): 1 000 rules. Stream length: 4 000 000 packets. θ = 1.5.
3 changes in packet flow characteristics.
Dependency index (DI - probability of a dependency between any two rules): 0.25
Similarity index (SI - probability of each packet belonging to the same stream as
the previous one): 0.75
Table shows mean position of matched rule and mean (cumulative) latency since
last checkpoint (*), since last traffic variation (") and since start of packet
stream (^)

Packet Number of Average Average Average Average Average Average
 flow Packets Rank* Rank" Rank^ Latency* Latency" Latency^
 R* R" R^ L* L" L^

(initial) 100000 485.26 485.26 485.26 366.69 366.69 366.69
 200000 448.66 466.96 466.96 338.82 352.76 352.76
 300000 417.56 450.49 450.49 315.14 340.22 340.22
 400000 391.89 435.84 435.84 295.61 329.06 329.06
 500000 372.26 423.12 423.12 280.83 319.42 319.42
 600000 356.86 412.08 412.08 269.20 311.05 311.05
 700000 349.02 403.07 403.07 263.29 304.23 304.23
 800000 340.53 395.25 395.25 256.89 298.31 298.31
 900000 338.29 388.92 388.92 255.16 293.51 293.51
 1000000 333.14 383.35 383.35 251.33 289.30 289.30

(variation) 1100000 487.61 487.61 392.82 364.08 364.08 296.09
 1200000 455.80 471.71 398.07 340.46 352.27 299.79
 1300000 424.65 456.02 400.12 317.41 340.65 301.15
 1400000 396.19 441.06 399.84 296.09 329.51 300.79
 1500000 374.08 427.67 398.12 279.42 319.49 299.36
 1600000 360.43 416.46 395.76 269.12 311.10 297.47
 1700000 348.11 406.70 392.96 260.16 303.82 295.28
 1800000 345.88 399.09 390.35 258.65 298.17 293.24
 1900000 336.54 392.14 387.51 251.78 293.02 291.06
 2000000 334.00 386.33 384.84 249.91 288.71 289.00

(variation) 2100000 480.18 480.18 389.38 358.17 358.17 292.30
 2200000 447.21 463.69 392.01 333.58 345.88 294.17
 2300000 419.02 448.80 393.18 312.50 334.75 294.97
 2400000 391.50 434.48 393.11 292.04 324.07 294.85
 2500000 372.56 422.09 392.29 278.02 314.86 294.17
 2600000 358.98 411.57 391.01 268.09 307.07 293.17
 2700000 348.82 402.61 389.45 260.85 300.46 291.97
 2800000 344.28 395.32 387.83 257.67 295.12 290.75
 2900000 340.32 389.21 386.19 254.85 290.64 289.51
 3000000 339.55 384.24 384.64 254.42 287.02 288.34

(variation) 3100000 476.78 476.78 387.61 355.68 355.68 290.51
 3200000 442.44 459.61 389.33 330.09 342.88 291.75
 3300000 414.21 444.48 390.08 309.26 331.68 292.28
 3400000 393.23 431.67 390.17 293.73 322.19 292.32
 3500000 376.00 420.53 389.77 281.09 313.97 292.00
 3600000 358.76 410.24 388.91 268.47 306.39 291.35
 3700000 350.40 401.69 387.86 262.32 300.09 290.56
 3800000 343.42 394.41 386.70 256.97 294.70 289.68
 3900000 344.01 388.81 385.60 257.34 290.55 288.85
 4000000 339.55 383.88 384.45 254.02 286.90 287.98

Table 1: Simulated Results: Rank and Cumulative Latencies.

Tabled results are the mean position of the matched rule (rank) in the ACL and the
mean cumulative latency of this rule. In both cases, three values are given: the mean
since the last set of figures (R* & L*) – the instantaneous average, the mean since
the last traffic variation (R” & L”) – the variation average, and the mean of the
entire simulation (R^ & L^) – the continuous average. The three latency averages,
L*, L” and L^, are plotted in Figure 5.

Chapter 1 – Network Technologies

117

0

50

100

150

200

250

300

350

400

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

L*
L"
L^

Instantaneous Average

Variation Average

Continuous Average

Cumulative Latency (µs)

PacketsChange of traffic profile

n = 1,000
θ= 1.5
DI = 0.25
SI = 0.5

0 1 000 000 2 000 000 3 000 000 4 000 000

Figure 5: Simulated Results: Cumulative Latencies.

The mean rank, R, for a 1 000 rule list with no optimisation will be 500 and the mean
cumulative latency, L, for a latency range of 0.5 to 1.0, 500 × (1.0 + 0.5) / 2 = 375.
In simulation, optimised averages start at these values and are then progressively
lowered as rules with high hit rates are promoted. When traffic profiles change,
instantaneous and variation averages become poor again but are gradually improved
once more as the ACL adapts to the new characteristics. The continuous average
becomes steadier over time. In this example, L^ approaches a figure of
approximately 287, an improvement of 23% on the non-optimised figure.

ACL length (n): 1 000 rules. Stream length: 4 000 000 packets.
DI – Dependency Index. SI – Similarity Index.
Traffic (packet) characteristics change every q packets.

Table shows values of percentage improvement in expected latency
(100(L–L^)/L) for different values of DI, SI, q and θ.

 DI = 0 0.25 0.5 0.75 1

 SI = 0 θ = 1.1 15 14 13 10 0
 q = 10 1.5 15 14 13 10 0

 2.0 15 14 13 10 0
 2.5 14 13 12 9 0
 1.5 14 13 12 9 0

 SI = 0.25 θ = 1.1 17 15 13 10 0
 q = 1 000 1.5 17 15 13 11 0

 2.0 17 15 14 11 0
 2.5 17 15 14 11 0
 1.5 17 15 13 10 0

 SI = 0.5 θ = 1.1 19 17 15 10 0
 q = 50 000 1.5 21 18 15 11 0

 2.0 21 18 15 12 0

Proceedings of the Seventh International Network Conference (INC2008)

118

 2.5 21 18 15 12 0
 1.5 21 18 15 12 0

 SI = 0.75 θ = 1.1 19 17 15 12 0
 q = 1 000 000 1.5 26 23 20 13 0

 2.0 28 27 20 14 0
 2.5 28 27 20 14 0
 1.5 28 27 20 14 0

 SI = 1 θ = 1.1 20 19 16 13 0
 no variation 1.5 27 25 20 13 0

 2.0 30 29 22 16 0
 2.5 30 29 22 16 0
 1.5 30 29 22 16 0

Table 2: Simulated Results: Traffic Parameters and Promotion Coefficient.

Different parameters affect these values as shown in Table 2. Results are
proportionally similar for different n. High values of DI work against the
optimisation process, prohibiting desirable swaps. In the extreme cases, DI = 1
prevents any optimisation whereas DI = 0 allows rules to move freely. High values
of q and SI imply greater traffic stability, which improves the optimised values. The
effect of θ is more subtle. High values make rule promotion faster, which works
well for similar, stable traffic but can lead to repetitive, unnecessary swaps for
continuously changing, or oscillating, traffic patterns. A balance is necessary, with a
value around θ = 2 appearing to maximise the improvement in expected latency in
most cases.

6.3. Analysis

Routers vary considerably in their operation, particularly in terms of functional
implementation in hardware. The following is, by necessity, generic and, to some
extent, imprecise. However, it gives an appropriate indication of the relative worth
of dynamic optimisation. We discuss an operation simply as a unit of calculation or
assignment, probably performed in hardware on the appropriate interface.
(However, the same argument would apply in relative terms if these operations were
to be a part of the operating system software.)

For any given ACL manual configuration (or reconfiguration), Step 1 of the δ-opt
algorithm is executed once and can be taken as part of the configuration, Step 2,
every processed packet, and Step 3, every DSIZE packets. Step 2 consists of an
assignment, two calculations, two comparisons and a conjunction (possibly)
followed by a swap of six assignments – three for the rules and three for their hit-
rates - twelve operations in all. Step 3 has two loops of size n, one to establish the
maximum value and the other to reduce each value. The mean complexity (of Step
3) each packet is then 2n / DSIZE and, in total, 12 + 2n / DSIZE for Steps 2 & 3
combined.

Matching a packet against a rule consists of at least one operation (permit or deny)
followed by between 1 and 5 comparisons (Figure 1). Taking a mean of 1 + 3 = 4
operations per rule and a percentage saving for an optimised list of ξ gives an
optimisation trade-off of

Chapter 1 – Network Technologies

119

DSIZE

nnT 212
100
4

−−=
ξ , (14)

which will be positive (i.e. worthwhile) when

DSIZEn

50300
+>ξ . (15)

For example, taking n = 1 000 and DSIZE = 16, this gives 300 / 1 000 + 50 / 16 =
3.425. Table 2 shows that the improvement, ξ, exceeds this for all values other than
DI = 1 and is therefore worthwhile. Alternatively, taking θ = 2 and DI = SI = 0.5
gives an improvement of ξ = 15 and a trade-off of T = (15 x 1 000) / 25 – 12 – 2 000
/ 16 = 463, a positive benefit. Table 3 extends this calculation across a range of
values of n and DSIZE and, for each DSIZE, shows the key value of n*, the size of
ACL for which optimisation is profitable. Table 4 fixes DSIZE at 16 and calculates
n* for various values of DI and SI.

DI = SI = 0.5. θ = 2.

Table shows value of trade-off function, T = ξn/25 – 12 – 2n/DSIZE, for
different values of n and DSIZE.

 DSIZE = 8 16 32 64

 n = 10 -8.50 -7.25 -6.63 -6.31
 30 -1.50 2.25 4.13 5.06
 100 23.00 35.50 41.75 44.88
 300 93.00 130.50 149.25 158.63
 1 000 338.00 463.00 525.50 556.75
 3 000 1038.00 1413.00 1600.50 1694.25

 n* = 34.28 25.26 22.32 21.10

n* is the minimum length of list for T to be positive (i.e. for
optimisation to be worthwhile).

Table 3: Optimisation Trade-Off – Saving against Cost

θ = 2. DSIZE = 16

Table shows the value of n*, the minimum length of list for T = ξn/25 –
12 – n/8, to be positive (i.e. for optimisation to be worthwhile) for
different values of DI and SI.

 DI = 0.0 0.25 0.5 0.75 1.0

 SI = 0 25.26 27.59 30.37 43.64 ∞
 0.25 21.62 25.26 27.59 38.09 ∞
 0.5 16.78 20.17 25.26 33.80 ∞
 0.75 12.06 12.57 17.78 27.59 ∞
 1 11.16 11.59 15.89 23.30 ∞

Table 4: Optimisation Trade-Off – Minimum ACL Length

Proceedings of the Seventh International Network Conference (INC2008)

120

6.4. Discussion

No amount of traffic modelling can substitute entirely for testing on production
routers. However, these simulations are extensive and, within themselves, give
consistent results.

The major obstacle to successful (worthwhile) optimisation is highly interdependent
rules in an ACL. If no or few rules are permitted to be reordered then it is
impossible or difficult to find equivalent lists with lower expected latencies.
However, this is rarely the case in practical ACLs. The typical ACL in Figure 1, for
example, has large blocks of separate ‘permit’ and ‘deny’ blocks with no
dependencies within them. A worst-case figure for a practical ACL is likely to be DI
≈ 0.5, giving good results (Tables 2 & 4).

Table 2 suggests θ = 2 as an appropriate (and, in fact, convenient) value for the
promotion coefficient. The number of packets between hit-rate reductions (Step 3) is
then DSIZE, the size (number of bits) of the register being used to store them. (Step
3 is performed to prevent register overflow. The fastest route to overflow is through
a stream of packets all matching the same rule. The hit-rate of this rule will increase
by a factor of θ = 2 on each packet and, after a packets, will have a hit rate of 2 a.
The maximum safe number of packets between successive executions of Step 3 is
then log 2 2DSIZE = DSIZE.)

Depending on the stability and similarity of the traffic (q and SI) and the size of
registers used to store hit-rates (DSIZE), optimisation becomes worthwhile for ACLs
above a certain length (n*) (Tables 3 & 4). For realistic dependencies, this figure
ranges between about 10 and 30. (Note also that this analysis assumes the worst-
case scenario, from section 5, of packets arriving as an unbroken stream.) It is then
trivial to separate those lists to which optimisation is to be applied from those to
which it is not (Grout et al., 2006). Of course, it is precisely for longer ACLs that
optimisation will yield the best results.

For 11 real-world ACLs, the table shows the cases where δ-opt is
worthwhile () or not () for different levels of traffic similarity
(SI). θ = 2. DSIZE = 16.

 ACL n DI SI = 0.00 0.25 0.50 0.75 1.00

 A 16 0.47
 B 53 0.47
 C 55 0.30
 D 144 0.30
 E 19 0.47
 F 93 0.36
 G 111 0.39
 H 62 0.12
 I 172 0.43
 J 68 0.40
 K 63 0.45

Table 5: Real-World Examples

Chapter 1 – Network Technologies

121

Table 5 summarises the characteristics of several ACLs taken from a variety of
production applications. (No attempt has been made to remove redundancies or
inconsistencies, etc. from these ACLs: they are taken directly from source.) ACLs
B, C and D are taken from college/university LANs, F, G and H from company
networks and A and E from Small Office/Home Office (SOHO) environments
connecting to the Internet via an ISP. ACLs I, J and K are derived from templates
for various standard security configurations. δ-opt is seen to be effective in the
majority of real-world cases.

7. Conclusions

This case study justifies the use of simple heuristic optimisation (δ-opt) applied to
ACLs implemented as linear lists. It is shown that the savings in latency outweigh
the cost of execution time in the majority of cases. Equally significantly, for any
given ACL, operating within traffic with known characteristics, a simple calculation
based on rule latencies, dependencies and stability can determine whether δ-opt
optimisation will be beneficial for that ACL. (If traffic stability cannot be
determined, a worst-case scenario can be assumed.)

However, the paper, as a whole, also re-establishes a more well-known general
principle. Although traffic and ACL modelling and simulation, in their most general
form, may be complex and difficult, an analysis of the relevant parameters, in a
particular situation or application, may offer a level of simplification without losing
accuracy of representation or the essential behaviour of the underlying system.

This notion is illustrated here by considering the essential traffic parameters that
apply when analysing various implementations of ACLs. Both ACL rules and traffic
packets have a fairly complex structure and the relationship between them is more
complex still. However, each of the standard ACL implementations offers its own
form of simplification to the general model and the case study, for sequentially
processed lists, actually takes advantage of the relationship between lists and traffic
by discarding those parameters not directly involved by it. The result is a
streamlined, but still appropriate, model, capable of yielding efficient and powerful
results.

8. References

Abilene IV Trace Data (2007), http://pma.nlanr.net/Special/ipls4.html, (accessed 20 December
2007).

Al-Shaer, E. and Hamed, H., (2004) Modeling and Management of Firewall Policies, IEEE
Transactions on Network and Service Management, Vol. 1-1, April 2004.

Cisco (2002) ACL Optimizer and Hits Optimizer, Cisco Systems, http://www.cisco.com/
univercd/cc/td/doc/product/rtrmgmt/cw2000/fam_prod/acl_mgr/aclm_1_x/1_5/u_guide/ac1js.
pdf (accessed 20 January 2007).

Cisco (2003) ACL Manager, Cisco Systems, http://www.cisco.com/en/US/partner/products/
sw/cscowork/ps402/products_user_guide_book09186a00801f42b9.html (accessed 20 January
2007).

Proceedings of the Seventh International Network Conference (INC2008)

122

Cisco (2007) Packet Tracer Version 4.1, http://netpd.ciscolearning.org/icg/pt, (accessed 20
January 2007).

cnet (2007) “The cnet Network Simulator”, (University of Western Australia),
http://www.csse.uwa.edu.au/cnet/ (accessed 20 December 2007).

Colton, A. (2002), Cisco IOS for IP Routing, Rocket Science Press Inc., 2002.

Grout, V., McGinn, J. and Davies, J. (2005), “Reducing Processing Latency in Network
Traffic Filters”, Proceedings of the 5th International Network Conference (INC 2005) Samos
Island, Greece, 5th-7th July 2005, pp3-10.

Grout, V., McGinn, J., Davies, J., Picking, R. and Cunningham, S. (2006), “Rule
Dependencies in Access Control Lists”, Proceedings of the IADIS International Conference
WWW/Internet 2006 (ICWI 2006), Murcia, Spain, 5-8 October 2006, pp537-544.

Grout, V., McGinn, J. and Davies, J., (2007a) “Real-Time Optimisation of Access Control
Lists for Efficient Internet Packet Filtering”, Journal of Heuristics, Vol. 13, No. 5, October
2007, pp435-454

Grout, V., Davies, J. and McGinn, J., (2007b) “An Argument for Simple Embedded ACL
Optimisation”, Computer Communications, Vol. 30, No. 2, January 2007, pp280-287.

Jenkins, J.L. and Wang, J.L. (1999), “From the Network Measurement Collection to Traffic
Performance Modeling: Challenges and Lessons Learned”, Journal of Brazilian Computer
Society, Vol. 5, No. 3, 1999.

Kos, A., Pustišek, M. and Bešter, J. (2003), “Characteristics of Real Packet Traffic Captured
at Different Network Locations”, Proceedings of IEEE Region 8 EUROCON 2003, Ljubljana,
Slovenia, 22-24 September, Vol. 1, pp164-168.

Leland, W.E., Taqqu, M.S., Willinger, W. and Wilson, D.V. (1994), “On the Self-Similar
Nature of Ethernet Traffic” (Extended Version), IEEE/ACM Transactions on Networking,
Feburary 1994, pp1-15.

McKeown, N. (2006), “Internet Routers: Past, Present and Future”, British Computer Society
(BCS) 2006 Lovelace Medal Lecture, http://www.bcs.org/server.php?show=nav.7935
(accessed 20 December 2007).

ns-2 (2007), “The Network Simulator – ns-2”, (accessed 20 December 2007)
http://nsnam.isi.edu/nsnam/index.php/User_Information

Paxson, V. and Floyd. S. (1995), “Wide Area Traffic: The Failure of Poisson Modeling”,
IEEE/ACM Transactions on Networking, June 1995, pp236-244.

Paxson, V. (1999), “End-to-End Internet Packet Dynamics”, IEEE/ACM Transactions on
Networking, June 1999, Vol.7, No.3, pp277-292.

Qian, J., Hinrichs, S. and Nahrstedt, K. (2001), ACLA: A Framework for Access Control List
(ACL) Analysis and Optimization, Proceedings of the IFIP TC6/TC11 International
Conference on Communications and Multimedia Security, May 21-22, 2001, Darmstadt,
Germany.

Rezaul, K.M. and Grout, V. (2007), “Exploring the Reliability and Robustness of HEAF(2)
for Quantifying the Intensity of Long-Range Dependent Network Traffic”, International

Chapter 1 – Network Technologies

123

Journal of Computer Science and Network Security, Vol. 7, No. 2, February 2007, pp221-
229.

Rezaul, K.M. (2007), Estimating Long-range Dependent Self-similar Network Traffic:
Performance Evaluation and Control, PhD thesis, University of Wales, NEWI, October 2007.

Syngress (2002), Building Cisco Remote Access Networks, Syngress Media, 2002.

Tan, L., Zhang, W., Peng, G. and Chen, G. (2006), “Stability of TCP/RED Systems in AQM
Routers”, IEEE Transactions on Automatic Control, Vol. 51, No. 8, August 2006, pp1393-
1398.

Trang Dang, D., Sandor, M. and Vidacs, A. (1999), “Investigation of Fractal properties in
Data traffic”, Journal on Communications, 1999, XLIX: pp12-18.

Varghese, G. (2005), Networking Algorithmics: An Interdisciplinary Approach to Designing
Fast Networking Devices, Morgan Kaufmann, 2005.

Zhu, J. and Roy, S. (2004), “Improving Link Layer Performance on Sarellite Channels with
Shadowing via Delayed Two-Copy Selective Repeat ARQ”, IEEE Journal on Selected Areas
in Communications, Vol. 22, No. 3, April 2004, pp472-481.

