
Chapter 4 – Applications and Impacts

191

A Service-Oriented Approach to Implementing an
Adaptive User Interface

E.K.Senga, A.P.Calitz and J.H.Greyling

Department of Computing Sciences, Nelson Mandela Metropolitan University
P.O. Box 77000, Port Elizabeth, 6031, South Africa

e-mail: andre.calitz@nmmu.ac.za

Abstract

Service-Oriented Architectures (SOA) are increasingly being adopted to integrate the disparate
computational assets in organisations. A major hurdle in the integration process is the
provision of user interfaces (UIs) for applications based on SOA. A popular approach to this
problem is to generate the UI whenever a user seeks to interact with an application. End users
of applications are, however, increasingly different in their needs, capabilities and traits.
Adaptive user interfaces (AUI) have been proposed as a means to cater for such differences.
This paper outlines research undertaken to develop an AUI prototype using a SOA. A hybrid
approach was used to analyse and design the prototype. An evaluation was conducted firstly to
determine whether the components of the prototype adhere to established SOA principles by
analytically evaluating the prototype based on these principles. Secondly, to determine the
effectiveness of the prototype by evaluating the prototype and finally, to evaluate the effect the
generated UI has on the performance of end-users by using a usability study. Results of the
evaluation indicate that the prototype components indeed adhere to SOA principles, the
prototype is effectively implemented and the UIs do not negatively affect the performance of
end-users.

Keywords

Service-oriented architectures, adaptive user interfaces, web services user interfaces.

1. Introduction

Service-Oriented Architectures (SOA) is a computing and design paradigm as well
as an architectural style which focuses on the design of computing systems by way of
services (Oasis, 2006; Papazoglou, 2006; Josuttis, 2007; Shen, 2007; Erl, 2008). A
major hurdle in the integration process when using SOA is the provisioning of user
interfaces (UIs) for SOA based applications (Tibco, 2006). A popular method of
integrating the UI in SOA, as a result of this challenge, is to generate the UI
whenever a user seeks to interact with an application (Kassoff, Kato and Mohsin,
2003; Ellinger, 2007; He and Yen, 2007; Song and Lee, 2007; Spillner, Braun and
Schill, 2007; Nestler, 2008; Gonzalez-Rodriguez, Manrubia, Vidau, and Gonzalez-
Gallego, 2009).

The end users using these applications have different expertise and competencies and
they have different needs, capabilities and traits. Adaptive user interfaces (AUI) have
been proposed as means to cater for such differences; thus allowing users with

Proceedings of the Ninth International Network Conference (INC2012)

192

different capabilities and needs to interact with applications. The provision of an UI,
that could adapt, depending on the user’s expertise and dynamic data obtained from
user interactions, can improve productivity and task completion time. Jason (2008)
indicated that novice users require a different UI from expert users, where expert
users utilise short-cuts and control-keys more extensively.

This paper discusses key concepts such as SOA, Automated User Interfaces,
Adaptive User Interfaces. This is followed by an overview of existing service-
oriented (SO) analysis and design methods and the combination of two popular
methods: SOMA by IBM and Service Oriented Analysis and Design Method
(SOADM) by Erl (2008). The application of this method to an AUI is presented, and
the outcome, a model for AUI services, is discussed. The implementation of a
prototype as a proof of concept is presented and its evaluation to answer various
research questions, as well as the results of the evaluation are provided. Finally,
conclusions drawn from the research are presented.

2. Background

This section provides background discussions on SOA, automated user interfaces,
adaptive user interfaces and service oriented analysis and design.

2.1. SOA

The most basic component of SOA is the service and the other components include
the Service Provider, Service Consumer and the Registry. The Service Provider is the
creator, owner or host of the service. Service providers register their services in
registries which are repositories or databases with a list of services and their
descriptions. The function of the registry is to keep a searchable list of services, in
order to allow service consumers to find appropriate services for their needs and bind
to them. Service Consumers are applications or other services looking to make use of
the capabilities of a service. They are able to search the Registry for appropriate
services and bind to them using a Universal Resource Locator (URL) provided in the
Registry.

2.2. Automated User Interfaces

SOA, as an architectural paradigm, advocates encapsulating units of computation or
capabilities and making them accessible via a defined interface. In practice, these
capabilities may be written in a variety of programming languages, deployed on
different platforms, and defined by an interface using WSDL. WSDL is an XML
specification that defines the operation(s) of a web service; the input and output
messages; the data types of input and output message; the messaging protocol (e.g.
SOAP) and bindings of the web service. This level of detail provided in the WSDL
provides limited information from which to generate a UI. Several authors have
proposed methods for creating UIs for web services (He, Ling, Peng, Dong and
Bastani, 2008; Spillner et al., 2007; Gonzalez-Rodriguez, Manrubia, Vidau, and
Gonzalez-Gallego, 2009). Some approaches simply generate UI’s from the WSDL of
web services while others make use of additional documentation to supplement the
generation of the UI (Kassoff et al., 2003). He and Yen (2007) propose an approach

Chapter 4 – Applications and Impacts

193

that uses an Object Layout Hierarchy (OLH) to define the layout of UI elements as
nested groups.

2.3. Adaptive User Interfaces

AUIs use different techniques to achieve an increase in the flow of information
between computers and users, and adapting the UI is one such technique. AUIs adapt
the UI to match the needs of diverse users. AUIs consist of three components which
work together in order firstly to capture user-interaction information and store this
information in a meaningful way that models the user. This is achieved by using
models of the user (User Model), the task (Task Model) and various other models of
the AUIs environment (Jason, 2008). Secondly, the components analyse the stored
information to make inferences about the user. Finally, the components are able to
adapt the AUI by changing aspects of the UI to match the characteristics of the
current user and thus facilitate the human-computer interaction between the
application and the user.

2.4. Service Oriented Analysis and Design

A number of service oriented design methods exist for the analysis, design and
implementation of SOA-based applications (Arsanjani, 2004; Zimmermann,
Krogdahl and Gee, 2004; Mittal, 2006; Arsanjani, Ghosh, Allam, Abdollah,
Ganapathy and Holley, 2008). SOMA is a popular method developed by IBM which
provides details of the analysis design and implementation of SOA applications and
systems (Arsanjani, 2004; Arsanjani et al., 2008). Erl’s (2005) Service-Oriented
Analysis and Design Methodology (SOADM) provides details that are not available
in SOMA. Implementing SOADM, the analysis and design phase of a model
includes three steps. The first step in system oriented analysis and design is to
identify relevant services. This is followed by deriving specifications of the derived
services. Lastly the realisation of the services involves decisions on how to
implement, deploy and maintain these services.

3. Implementation of the prototype

This section discusses the implementation of an AUI prototype using SOA, based on
an AUI services model (Figure 1). Firstly, the implementation domain is described in
order to provide a background of the domain in which the prototype is implemented.

Proceedings of the Ninth International Network Conference (INC2012)

194

Figure 1: AUI Services Model

3.1. Implementation Domain

Contact Centres (CCs) are the main point of contact between companies and their
customers. Contact Centre Agents (CCAs) are the personnel responsible for
interacting with customers in a CC and they respond to customers’ queries
concerning company products or services. The query resolution process begins with
logging the customer’s query, followed by providing customer details, assigning the
call and providing solution details. Jason (2008) implemented an AUI to improve the
performance of novice CCAs by providing different UIs based on the user’s inferred
level of expertise. A prototype, consisting of two UIs was created. One UI caters for
novice users and the other for expert users. For the current study, Jason’s prototype
was redeveloped within the SOA environment.

3.2. Prototype

An AUI services model (Figure 1) was defined after service identification and
specification were conducted. The AUI services model using SOA, defines how the
AUI services interact in order to provide adaptive functionality. The following
sections discuss the implementation of the components of the AUI services model, as
part of the service realisation phase.

Chapter 4 – Applications and Impacts

195

3.2.1. Knowledge base

The knowledge base stores the user and task models. Both the user and task models
are implemented using XML. These components are discussed further below.

3.2.1.1. User model

AUIs generally utilise a user model. The purpose of the user model is to store user-
related information; which is used in the adaptation process. The user’s unique
characteristics are either stored or derived from the data stored within the user model.
User performance data are stored as an XML document within a user’s profile in a
database. In addition, the user profile contains the user’s log-in times, and the time
taken to complete tasks. Every user begins as a novice regardless of expertise and
experience. The Keystroke Level Model (KLM) is used to determine whether a user
is an expert or a novice (Hurst, Hudson and Mankoff, 2007) and the low level
behavioural data is obtained and analysed using Jason (2008) model. Once the
performance matches the performance of predicted expert users, the prototype ceases
to generate the novice UI and now generates the expert UI.

3.2.1.2. Task model

The task model maintains a model of a task or goal the user is trying to achieve. The
model defines a task and its sub-tasks in a hierarchical structure. The sub-tasks are
marked as being complete or incomplete as the user interacts with the UI and
completes different sub-tasks. In this study, the task model is stored as an XML
document. It is also exploited to provide additional capabilities, for example, element
dependencies within the UI are addressed using the task model.

3.2.1.3. Agent Manager - Watcher Service

This research defines Informative Moments (IM) as UI elements with which users
interact. For each IM with which users interact, various metrics, referred to as
Predictive Features (PFs) are captured. A PF relates to a specific, measurable action
(Hurst et al., 2007). It can be measured for any UI element such as a drop down list.
The function of the Watcher component is to capture user-interaction information
and store this information in the knowledge base. In order to achieve this as a
service, the generated UI is created with JavaScript code to collect user-interaction
information for each IM. An AUI object is created for each IM and updated if the
user interacts with the IM.

The PFs that have time as a unit of measurement (Dwell Time, Total Time and
Selection Time) are measured using the start-time and the end-time of the action. The
Dwell Time measures the time (in seconds) during which a user was inactive for
longer than 1 second while making a list selection. The Total Time measures the
cumulative total time that a user has interacted with an IM. The Selection Time
measures the time taken from when a user selects a list until an item is selected in the
list. Jason (2008) identifies various other PFs such as Mouse Velocity and Mouse
Acceleration. The KLM Predicted Time is a constant value (2.65 seconds) and is
obtained from the design of a KLM (Jason 2008). The KLM Difference is obtained

Proceedings of the Ninth International Network Conference (INC2012)

196

by subtracting the current Selection Time from the KLM Predicted Time. Experts are
therefore expected to have a smaller KLM than novice users (Jason, 2008). The user
model is updated when all the values for the PFs have been obtained, storing a
separate record of each task performed.

3.2.1.4. Analysis Engine – Analysis Engine Service

The role of the Analysis Engine Service is to make inferences about users from the
information stored in the user model. When invoked, this service uses statistical
inference techniques to determine whether the current CCA’s performance is equal
to or better than the performance of previously defined (not part of this study) expert
users, determining whether a user is classified as an expert or not.

3.2.2. Presentation Manager – Transformation Service

The Analysis Engine Service is invoked by the Transformation Service to determine
which type of UI to generate for the user. The presentation manager, which satisfies
the efferential component of adaptivity, specifies how an AUI should adapt. In this
study, adaptation is provided by generating a UI for a user, based on the user’s
inferred level of expertise. The functionality of the presentation manager is provided
by the Transformation Service. The appropriate UI for a user’s level of expertise is
generated once the expertise of the user is determined by using the Analysis Engine
Service. The Transformation service performs its function by using Extensible
Stylesheet Language Transformation (XSLT) (W3C, 2009) rules to combine
information from the Task Model, the WSDL for the services that support Call
Logging steps and the Object Layout Hierarchy to create the UI. The following
sections discuss the elements used by the Transformation Service.

3.2.3. Object Layout hierarchy

The Object Layout Hierarchy (OLH) is an XML document which uses nested XML
elements to define groups of UI elements in a UI and the layout that these groups
have (He et al., 2008). This document is accessed with the Task Model and the
XSLT documents to determine the UI layout during the generation process. Various
horizontal and vertical groups (either sorted or not) can be defined. Figure 2
illustrates how the layout definitions are applied to the UI in order to achieve the
layout of elements. Additional styling of the UI is required, however.

Chapter 4 – Applications and Impacts

197

Figure 2: Example of the application of the layout groups to the Novice Step 1

4. Evaluation

The evaluation consisted of a three-component evaluation of the prototype, namely,
an analytical evaluation, evaluation by software engineering metrics and finally, a
usability evaluation of the generated UI.

4.1. Analytical Evaluation

Erl (2008) proposed a set of design principles to which application services for SOA
applications should conform. An analytical evaluation was conducted to evaluate the
prototype based on these principles:

A. Service composability: “Services are effective composition participants,
regardless of the size and complexity of the composition”;

B. Service coupling: “Service contracts impose low consumer coupling
requirements and are themselves decoupled from their surrounding
environment”;

C. Service abstraction: “Service contracts only contain essential information
and information about services is limited to what is published in service
contracts”;

D. Service statelessness: “Services minimize resource consumption by
deferring the management of state information when necessary;

E. Service re-usability: “Services contain and express agnostic logic and can
be positioned as reusable enterprise resources”;

F. Service autonomy: “Services exercise a high level of control over their
underlying runtime execution environment”;

G. Service discoverability: “Services are supplemented with communicative
metadata by which they can be effectively discovered and interpreted”.

Ordered Vertical
Group

Ordered Horizontal
Group

Proceedings of the Ninth International Network Conference (INC2012)

198

Table 1 provides a summary of the service evaluation using SOA design principles.
The table shows the rating assigned to the AUI services based on the characteristics
portrayed by the services. Green cells in the table represent full adherence to the
design principle by the service. Yellow cells represent partial adherence. The
information in Table 1 is evidence that the AUI services conform to SOA principles.

TRANSFORMATIO
N

WATCHER ANALYSIS

A. SERVICE
COMPOSABILITY

COMPOSABLE COMPOSABLE COMPOSABLE

B. SERVICE
COUPLING

CENTRALISED CENTRALISED CENTRALISED

C. SERVICE
ABSTRACTION

CONCISE CONCISE CONCISE

D. SERVICE
STATELESSNESS

PARTIAL
ARCHITECTURAL

PARTIAL
ARCHITECTURAL

PARTIAL
ARCHITECTURAL

TACTICA
L

HIGH LOW LOWE. SERVICE
REUSABILITY ACTUAL HIGH HIGH HIGH
F. SERVICE
AUTONOMY

PURE (FULL) PURE (FULL) PURE (FULL)

G. SERVICE
DISCOVERABILITY

SUFFICIENTLY
DESCRIBED

SUFFICIENTLY
DESCRIBED

SUFFICIENTLY
DESCRIBED

Table 1: Summary of analytical evaluation

4.2. Software Engineering Metrics

A number of software engineering metrics was measured in order to evaluate how
effectively the prototype was achieved. Decoupling metrics measured the level of
dependency between the AUI services, while architectural metrics measured how
effectively the prototype was architected.

4.2.1. Decoupling metrics

A single decoupling metric, the degree of coupling within a given set of services
(DCSS) was measured. The formula for determining this metric is shown in Figure 3.
This metric was first proposed by Quynh and Thang (2009) who state that a lower
value DCSS value equates to a lower degree of coupling between services. Any
result between 0 and 1 means that coupling for that set of services is low. The
measured DCSS for the prototype in this study was found to be 0.33, thus showing
that the coupling between services was indeed low. This means that services were
developed with minimal dependencies in accordance with the loosely coupled
principle of SO design.

Chapter 4 – Applications and Impacts

199

 WHERE
1. U AND V ARE TWO SERVICES IN THE SET OF SERVICES
2. D (U,V) IS THE DISTANCE BETWEEN SERVICES U AND V
3. MAX = K*V*(V-1)
4. MIN = V*(V-1)

WHERE,
a. K = MAXIMUM VALUE BETWEEN ANY TWO SERVICES IN THE

GRAPH
b. V = NUMBER OF SERVICES (NODES IN THE GRAPH)

Figure 3: Formula for DCSS

4.2.2. Architectural design metrics

Characteristics of an application such as structural, data and system complexity can
be measured by using software engineering metric models. High complexity values
mean that complex code had to be written in order for the modules to function in an
SOA, while low values mean that the complexity is low.

Figure 4: Structural complexity formula

Where, is the fan-out of each class or module being evaluated and
is the number f modules in a system.

Figure 5: Data complexity formulae

Where:

 is the number of input and output parameters passed to and from the module.

 is the fan-out of each class or module being evaluated

 is the number of modules in a system.

4.2.3. Structural complexity

Structural complexity measures the complexity of a module using the Fan-out
approach (Card and Glass, 1990; Pressman, 2004). For the purposes of this
evaluation, fan-out refers to procedural calls to dependent classes and web services,
i.e. calls to other web services as well as subordinate classes (e.g. data access class

Proceedings of the Ninth International Network Conference (INC2012)

200

for a service). Fan-out is calculated for each procedure in a module, and the sum of
all procedures’ fan-out values is the fan-out of the module. Figure 4 shows the
formula used to calculate the structural complexity of a system by adding up the
fan-out for each module (Kan, 2002).

Data complexity

Data complexity is a measure of the complexity in the internal interface for a given
module (Card and Glass 1990; Pressman 2004). Figure 5 (A) shows how the data
complexity is measured for each module of a system, while Figure 5 (B) shows how
the data complexity of each module in a system is added up to get the average data
complexity of a system.

 System complexity

System complexity is a measure of the overall system complexity. Overall system
complexity is affected when the structural and data complexity of components within
a system change (Kan, 2002; Pressman, 2004). System complexity is measured by
adding the structural and data complexity of a system.

4.3. Results from applying metrics

Table 2 provides a summary of the metrics when applied to the AUI services of the
prototype. Increased structural complexity increases the problem and perceived
complexity of a system (Bundschuh and Dekkers, 2008). A complex system requires
more effort to implement. Low complexity values, therefore, indicate less effort in
implementing a module. The values in Table 2 show the structural and data
complexity for the AUI services. The transformation and expertise services have
extremely low structural complexity values. This was done intentionally to decouple
the services from their external environment. The watcher class, however, has higher
level coupling and dependency as indicated by the complexity values. This indicates
that complex code had to be written to perform the required functionality.

Service Architectural Design Metrics
Structural Complexity Data Complexity System Complexity

Transformation 0 2 2
Watcher 9 1.43 10.43
Expertise 1 1.5 2.5
Overall 10 4.93 14.93

Table 2: Summary of Architectural Design Metrics for AUI services.

4.4. Usability Evaluation

The purpose of this section is to report on the evaluation of the generated UI by
testing its usability using usability evaluation guidelines (Nielsen, 1993; Scholtz,
2000). The majority of the 30 participants were recruited from the NMMU
Department of Computing Sciences Department. Thirty participants were recruited
for the evaluation. Participants were required to have a high level of computer
experience, a sound knowledge of IT and no application or domain experience. A

Chapter 4 – Applications and Impacts

201

role-playing scenario was used for the evaluation (Pretorius, 2005) and a simulated
CC environment was created whereby the participant played the part of a CCA,
while the instructor took the role of a customer calling into a CC with a query.

A test plan which provided instructions on how to complete the tasks and
information on the tasks to be performed was created for the evaluation using the
same set of heuristics as Jason (2008). The final task plan consisted of 7 tasks in
total. The effectiveness and efficiency of the prototype was evaluated, which
included eye-tracking evaluations (not included in this paper).

Effectiveness

Task success (or completion rate) can be used to measure how effectively a user is
able to complete a given set of tasks on a UI (Tullis and Albert, 2008). Each task
consisted of 4 steps, with each step contributing 25% to the task completion. Figure
6 shows the task success and failure rates for tasks 1 to task 7. Task one shows poor
performance, with only 30% of the participants (n=9) completing the task with a
100% success rate and only 60% (n=18) completing more than 75% of the task
successfully. Over the course of the evaluation, however, the task completion rate is
observed to increase. Task 4 has 90% (n=27) of the participants completing more
than 75% of the tasks and task 7 has 100% of the participants completing 100% of
the task. Only five participants attempted task 7, however, since the UI was adapted
for all the other participants before they attempted this task.

Figure 6: Task Completion rates for Tasks 1-7.

Efficiency

Time-on-task is a metric that measures the length of time a participant takes to
complete a task and thus user efficiency. Combining this metric with task success
shows the participant’s task efficiency as the completion rate per unit of time. Figure
7 shows the mean time-on-task achieved by all participants (n=30) for task 1 to task

Proceedings of the Ninth International Network Conference (INC2012)

202

7. The average time to complete tasks reduced drastically after the first task showing
that users required only one task to familiarise themselves with the UI.

Figure 7: Mean Time-on-Task.

The success rate for each task was combined with the time-on-task to give a value
for efficiency. CCAs from the NMMU ICT helpdesk are given approximately two
minutes to resolve a query, after which the call must be assigned to a technician who
can resolve the query (Vermaak, 2008). Efficiency was therefore measured as the
task completion rate per two minutes, that is, how many calls an agent resolves every
two minutes. Tasks 1-7 were typical tasks CCA’s perform working at the NMMU
helpdesk.

Figure 8 shows the efficiency rates for all the tasks completed by participants. This
was done by measuring the efficiency as the completion rate per unit of time (two
minutes in this case). Task 1 had the lowest efficiency rate of 37% which means that
users were only capable of completing 37% of tasks every two minutes. This can be
explained by the learning required to complete tasks. Task 5 has the highest
efficiency rate of 77%.

Figure 8: Efficiency rates.

Chapter 4 – Applications and Impacts

203

These results indicate that the users could, effectively and efficiently, complete the
tasks outlined in the task plan. By completing the tasks in good time, it can be
inferred that the generated UIs did allow users to complete the tasks.

5. Conclusions and Recommendations

The aim of this research was to determine if an AUI could be implemented by using
a SOA. In order to meet this objective, an AUI services model was designed and a
proof-of-concept prototype was implemented and evaluated using an analytical
evaluation and a usability evaluation. The evaluation of the prototype showed that
users’ productivity was not negatively affected by using a SOA. It can therefore be
concluded that an AUI can be implemented effectively by using an SOA.

The scope of this research was limited to the use of AUI services in a controlled
environment. Future work could involve a research study building on the work of
Gonzalez-Rodrigues, et al. (2009) by implementing an adaptive user interface
management system and comparing the results to the findings in this study. The
envisaged benefits of this research would be increased by the availability of AUI
services in organisations for improved UI usage by agents and for training purposes.

6. References

Arsanjani, A. (2004), Service-Oriented Modeling and Architecture (SOMA) (Online).
Available at: https://www.ibm.com/developerworks/webservices/library/ ws-soa-design1/,
Date Accessed: 20 May 2009.

Arsanjani, A., Ghosh, S., Allam, A., Abdollah, T., Ganapathy, S. and Holley, H. (2008),
SOMA: A method for developing service-oriented solutions. IBM Systems Journal, 47, pp
377-396.

Bundschuh, M. and Dekkers, C. (2008), The IT Measurement Compendium: Estimating and
Benchmarking Success with Functional Size Measurement, Berlin / Heidelberg, Springer.

Card, D. N. and Glass, R. L. (1990), Measuring Software Design Quality, University of
Michigan, Detroit, USA, Prentice Hall.

Ellinger, R. S. (2007), Service Oriented Architecture and the User Interface Services: The
Challenge of Building User Interface Services. Technology Review Journal, 15, pp 43-61.

Erl, T. (2005), Service-Oriented Architecture: Concepts, Technology, and Design, Upper
Saddle River, NJ Prentice Hall PTR.

Erl, T. (2008), SOA Principles of Service Design, Upper Saddle River, NJ, Prentice Hall.

Gonzalez-Rodriguez, M., Manrubia, J., Vidau, A. and Gonzalez-Gallego, M. (2009),
Improving accessibility with user-tailored interfaces. Applied Intelligence, 30, pp 65-71.

He, J. and Yen, I.-L. (2007), Adaptive User Interface Generation for Web Services. In
Proceedings of e-Business Engineering, 2007. ICEBE 2007, pp 536-539.

Proceedings of the Ninth International Network Conference (INC2012)

204

He, J., Yen, I. L., Tu, P., Jing, D. and Bastani, F. (2008), An Adaptive User Interface
Generation Framework for Web Services. In Proceedings of the Congress on Services Part II,
2008. (SERVICES-2. IEEE), pp 175-182.

Hurst, A., Hudson, S.E. and Mankoff, J. (2007), Dynamic detection of novice vs. skilled use
without a task model. Proceedings of the SIGCHI conference on Human factors in computing
systems. San Jose, California, USA. ACM. pp 271-280.

Jason, B. A. (2008), An Adaptive User Interface Model for Contact Centres. Department of
Computer Science and Information Systems. Port Elizabeth. South Africa., Nelson Mandela
Metropolitan University.

Josuttis, N. M. (2007), SOA in Practice: The Art of Distributed System Design, Sebastopol,
CA, USA, O'Reilly Media, Inc.

Kan, S. H. (2002), Metrics and Models in Software Quality Engineering, Reading, Mass,
Addison-Wesley Professional.

Kassoff, M., Kato, D. and Mohsin, W. (2003), Creating GUIs for Web Services. IEEE
Internet Computing, 7, pp 66-73.

Mittal, K. (2006), Build your SOA, Part 3: The Service-Oriented Unified Process (Online).
Available at: http://www.ibm.com/developerworks/webservices/library/ws-soa-method3
/index.html, Date Accessed: 21 October 2008.

Nestler, T. (2008), Towards a Mashup-driven End-User Programming of SOA-based
Applications. In Proceedings of the 10th International Conference on Information Integration
and Web-based Applications and Services, pp 551-554.

Nielsen, J. (1993), What is usability?, San Francisco, Morgan Kaufmann.

Oasis (2006), Reference Model for Software Oriented Architectures (Online). Available at:
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=soa-rm Date Accessed: 15
March 2008.

Papazoglou, M. P. (2006), Web Services Technologies and Standards. ACM Computing
Surveys.

Pressman, R. (2004), Software Engineering: A Practitioner's Approach, New York, NY, USA,
McGraw-Hill Science/Engineering/Math.

Pretorius, M. (2005), The Added Value of Eye Tracking in the Usability Evaluation of a
Network Management Tool. Department of Computer Science and Information Systems. Port
Elizabeth. South Africa, Nelson Mandela Metropolitan University.

Quynh, P. T. and Thang, H. Q. (2009), Dynamic Coupling Metrics for Service--Oriented
Software. International Journal of Computer Science and Engineering, 3, pp 46-46.

Scholtz, J. (2000), Common industry format for usability test reports. In Proceedings of the
Conference on Human Factors in Computing Systems, pp 301-301.

Shen, H. T. (2007), Service-Oriented Architecture Future of IT: SERVICE-ORIENTED
ARCHITECTURE. University of Queensland, Australia.

Song, K. and Lee, K.-H. (2007), An Automated Generation of XForms Interfaces for Web
Service. In Proceedings of the IEEE International Conference on Web Services 2007, pp 856-
863.

Chapter 4 – Applications and Impacts

205

Spillner, J., Braun, I. and Schill, A. (2007), Flexible human service interfaces. In Proceedings
of the 9th International Conference on Enterprise Information Systems, pp 79-85.

Tibco (2006), Rich Portals: The Ideal User Interface for SOA. Palo Alto, CA, USA.

Tullis, T. and Albert, W. (2008) , Measuring the User Experience: Collecting, Analyzing, and
Presenting Usability Metrics, Burlington, MA, USA, Morgan Kaufmann.

Vermaak, R. (2008), ICT Helpdesk Manager at the Nelson Mandela Metropolitan University.
Port Elizabeth. South Africa.

W3C (2009) XSLT (Online). Available at: http://www.w3.org/TR/xslt. Date Accessed: 15
August 2009.

Zimmermann, O., Krogdahl, P. and Gee, C. (2004), Elements of Service-Oriented Analysis
and Design. IBM developerWorks.

