
315

 Applications and Impacts

Updates of Compressed Dynamic XML Documents

Tomasz Müldner , Christopher Fry , Jan Krzysztof Miziołek , and Tyler Corbin

Jodrey School of Computer Science, Acadia University
IBI AL, University of Warsaw
tomasz.muldner@acadiau.ca

062181f@acadiau.ca
jkm@ibi.uw.edu.pl

094568c@acadiau.ca

Abstract: Because of the ever-growing number of applications that send numerous
and potentially large XML files over networks there has been a recent interest in effi-
cient updates of XML documents. However all known approaches deal with uncom-
pressed documents. In this paper, we describe a novel XML compressor, XSAQCT
designed to improve the efficiency of querying and updating XML documents with
minimal decompression in a network environment.

1 Introduction

Although XML is now the de facto data standard for Web services, as well as for encod-
ing semi-structured data, its verbose nature and the resulting large sizes of the underlying
XML documents adversely affects various network-based XML services. One such service
is remote XML storage and transmission of XML files to other nodes in the network (in
particular, for devices with limited memory such as mobile devices and wireless sensors,
which are becoming ubiquitous in today’s society). Furthermore, while querying large
XML documents is a commonly-executed operation, the high execution time and memory
requirements of query tools (e.g. XQuery [XQ008]) severely limits their usefulness for
very large documents; similar issues exist for XML update operations. Therefore, improv-
ing the efficiency of XML storage and processing is a key research challenge. However,
practically all existing approaches to update operations are limited to updates of uncom-

pressed documents, which suffer from scalability issues for large XML documents.

In this paper, we describe XSAQCT (pronounced exact), which supports querying and up-
dating XML documents using minimal decompression. We envision that XSAQCT will
prove especially useful for mobile applications where client-side storage and CPU speed
are limited. Less powerful, thin mobile clients can query or update potentially very large
XML documents stored on a server without first completely downloading and decompress-
ing the document (in this case, the processing is done on the server side).

The results described in this paper build directly on our recent work, based on intermedi-
ate representation of the XML structure in the form of an annotated tree, where each tree

316

INC 2010

node is labeled by an annotation representing partial information on document structure
via an integer sequence (the entire annotated tree represents the structure of the complete
XML document). Specifically, our approach entails: (1) encoding the document structure
in an annotated tree; (2) storing the annotated tree and the document contents in sepa-
rate containers; and (3) applying back-end compressors to the containers. We designed,
implemented and tested a queryable XML compressor, called XSAQCT [MFMD09], that
supports querying with lazy decompression. XSAQCT uses a single SAX pass of the in-
put document and does not require building an in-memory representation of the document
(such as a DOM tree). Consequently, our technique is applicable to processing very large
XML documents and to streaming. We compared XSAQCT and TREECHOP [LMD05],
the only other queryable XML compressor available for testing, on a standard XML corpus
[W10]. Our findings demonstrated that XSAQCT achieves 50% to 80% higher compres-
sion ratio and, on average, 50% faster query time than TREECHOP. This improvement
over TREECHOP did not sacrifice time efficiency as both compressors have a similar
compression/decompression time.

The annotated tree is designed to support extensions of XSAQCT to include updates. In
this paper, we describe such an extension, in which the basic scenario for updating a com-
pressed XML document considers multiple insert and deletes operations, interleaved with
querying. To avoid potentially costly (in terms of the CPU and memory) updates of the
corresponding annotations, each annotated tree node has a list of pending update opera-
tions (referred to as pending lists).

Contributions: Our main contribution is to describe updates of compressed documents,
with lazy decompression. We compared XSAQCT with its competitors and determined
that out of the 32 different trials, XSAQCT achieved the best results, as it was placed first
fourteen times, and it placed second fourteen times. QizX achieved the second best results,
as it was placed first fourteen times and it placed second 10 times. Since on average there
is a high ratio of retrievals to insertions/updates, and XSAQCT does not force a complete
re-writing of the underlying document nor does it force complete decompression, it is an
ideal candidate for networked environment requiring storage of XML documents.

This paper is organized as follows. Section 2 describes related work, and Section 3 in-
troduces XSAQCT, and its applications to updating, querying, compressing, and decom-
pression. Section 4 provides results of testing of our compressor, and compares these
results with other existing XML compressors. Conclusions and future work are described
in Section 5.

2 Related Work

Given XML-related performance issues, there has been interest in devising various XML
compression schemes. In many instances it is not practical to decompress an entire XML
file to execute an operation such as a query or an update and provide lazy decompression,
i.e. decompress “as little as possible”. As far as query operations are concerned, recently
there has been interest in queryable XML compressors that have the potential to improve

317

 Applications and Impacts

response time by operating on (partially) compressed data (e.g. XQueC, [ABC 03]).
Because of space limitations, here we do not review this work. As far as update of XML
documents is concerned, there are various XML updaters (mostly in the area of general
databases or database engines), briefly reviewed below. Our review is focused on native
XML databases rather than databases, which store XML documents as CLOBS. Since the
current version of XSAQCT does not support optimization techniques, such as indexing
or caching, here we do not review these techniques.

IBM DB2 pureXML [p10] treats XML as a first-class data type, and it stores XML doc-
uments intact in its native format as type-annotated trees [DB2]. XML documents can be
compressed by a dictionary type compression technique, which replaces tag names with
unique integer values [NdL05]. However, pureXML does not compress trees to a more
concise format, similar to annotated trees in XSAQCT; nor does it compress XML data
values. In conclusion, pureXML does not attempt to perform XML-conscious lazy de-
compression for query and update operations.

Oracle Berkeley XML DB [Oa, Ob] stores various kinds of items in separate containers,
such as documents, indices and index statistics, data dictionary and other system meta-
data. By default, all XML documents stored in a container are compressed (metadata and
indexes are not compressed) and they are fully decompressed when they are retrieved from
those containers. Internally, XML nodes are stored in a B-tree. Therefore, this database is
not XML conscious.

eXist [Ea, Mei] is probably the most widely deployed native open source XML database.
eXist stores the XML tree as a modified, number scheme based, k-ary tree combined with
structural, range and spatial indexing based on B+-trees, and a cache used for database
page buffers, but it does not compress the documents.

In BaseX, [B10, Sch] the XML tree is encoded and mapped in a simple table storing all
of the node information. Processing time can then be improved by minimizing the table
structure coupled with text, attribute, full-text (not default) and path indexing.

Sedna [Se] is a full-featured native XML database, in which nodes of an XML document
are clustered together according to their positions in the descriptive schema of a document
where direct pointers are used to represent relations between nodes of an XML document
based on B-trees. It uses the numbering schema [AKNG06], in which the nodes of the
documents are labeled with certain unique identifiers.

Finally, Qizx [QX] is a native XML database engine, designed to perform high-speed
querying, retrieval and processing of indexed XML contents. Updates are not applied
immediately as the updating expressions are accumulated to a pending update list. Docu-
ments and indexes are compressed, and the compression mechanism is completely trans-
parent to users or applications. As a result, partial updates of documents are not fast,
because Qizx needs to entirely rebuild an updated document (but only once per transac-
tion).

318

INC 2010

3 XSAQCT

For the sake of completeness, in Section 3.1 we briefly recall the description of the pre-
vious version of XSAQCT that supported querying with lazy decompression (for more
details see [MFMD09]), and then in Section 3.2 we describe updates. Note that the anno-
tated tree representation is the internal representation used by our implementation and it is
not visible to the user, who operates on XML documents as if they were uncompressed. In
particular, the user will use standard XPath expressions to query and specify parts of the
document, which are to be updated.

3.1 Basic Architecture of XSAQCT

Given a document D, we perform a single SAX traversal of D to encode it, thereby creating
an annotated tree , in which all similar paths are merged into a single path and each
node is annotated with a sequence of integers; see Figure 1. Two absolute paths are called
similar if they are identical, possibly with the exception of the last component, which
is the data value. For example, the paths /a/b/t1 and /a/b/t2 are similar while the paths
/a/b/t1 and /a/c/t1 are not. Every similar path is given an annotation and these represent
a count of the number of nodes and the positions of nodes in D. In Figure 1, the first
node b has 0 e’s as a child, the second b also has 0 e’s, and the third b has 2 e’s as
children, this is represented as e having the annotation 0,0,2. Note that provides a
faithful but succinct representation of the structure of the input document D. Indeed, our
tests performed on the files from the commonly-used Wratislavia corpus confirmed the
succinctness of this representation.

(a) (b)

Figure 1: (a) XML document D; (b) the annotated tree TA,D representing D.

During parsing, data values are written to the appropriate data containers. Next, is
compressed by first writing its annotations to one container and the skeleton tree (with
annotations stripped) to one or more containers. Finally, all containers are compressed,
using back-end compressors, and written to create the compressor’s output . The main
back-end compressors used include GZIP [gzi], BZIP2 [bzi] and PAQ8 [paq] but the user
can add more compressors. The main reason behind using an annotated tree representation
is that it can be used to answer various queries and (as explained in the next section) to
efficiently implement updates.

319

 Applications and Impacts

3.2 Updates in XSAQCT

In Section 3.2.1, we describe update operations as seen by the user, and in Section 3.2.2
we describe the implementation of these operations. Due to space considerations, specific
algorithms are not described.

3.2.1 Updates in XSAQCT: User perspective

At the present time, we support the following basic update operations on the document D.
If a node n needs to be specified by the user, this is done using XPath syntax.

insert a document as a child of the node of at position (the value of
equal to 0 represents inserting as the leftmost child, while the value of equal to the
number of children of plus one represents inserting as the rightmost child)

delete a sub-document of rooted at the node

insert a new text node as a child of the node of at position - possibly merging
with sibling text nodes

delete the existing text node specified by the path

insert a set of new attributes of the node of

flush the pending list and update the actual XML document

The final version of our system will support all update operators (such as move a sub-
document), following the proposed W3C Update Facility [XQ08]; most of these operations
can be easily implemented using the above basic operations.

The above basic operations are supported via the following three basic functions:

1. Boolean insertNode(path p, string nname, int pos), which inserts an element with
the name nname as a child of the node p at the position pos. If the operation is
successful the node will be inserted in the Annotated Tree. Inserting a document
is supported by traversing top-down, and applying insertNode().

2. Boolean removeNode(path p), which removes the node n at path p and all of the
child nodes of the node at p. The entire sub-document rooted at n will be removed
from the Annotated Tree.

3. void flush(), which flushes all pending lists

The above three basic update operations will be referred to as high-level XML update op-
erations; these operations as well as the query operations are implemented via low-level
update operations referred to as AU-operations, described in Section 3.2.2. XSAQCT sup-
ports two modes of operation: (1) with undoing of operations (like in XQuery Updates);

320

INC 2010

and (2) without undoing, in which two operations appearing in the pending list may “can-
cel each other”, for example inserting some node followed by removing the same node.

In addition to the update operations, there are various query operations. Currently, only
simple queries have been implemented (specifically, we have implemented absolute paths).
A query, which ends in an element, can be immediately answered using the annotated tree,
and therefore it only requires a decompression of this tree. Now, consider a query, which
calls for text values for a given path. As mentioned earlier, the compressor creates a
separate container storing all values for similar paths. Therefore, to answer this type of a
query it is enough to decompress a single data container, and then return the text values
stored in this container.

In the following section we describe the implementation of XML updates. In this section,
as well as in Section 4, where we present results of our tests, we use the following abbrevi-
ations: I stands for insert, R for removing a node, Q for query (here, “*” means all nodes,
and text() to find the text values), T for adding a new text, and X for removing text.

3.2.2 Updates in XSAQCT: Implementation perspective

Update operations result in modifications of annotations, which may be costly (e.g. in-
serting or removing a single item from an annotation sequence). Therefore, our approach
supports lazy updates, implemented by attaching to each annotated tree node a list of pend-
ing update operations (referred to as pending lists). Updates in the pending list will only be
applied when a threshold is reached (the value of threshold will be determined experimen-
tally) or when the user explicitly requests such operation; at that time, the pending list is
flushed. The (working) state of the pending list is defined as a sequence
where every is an AU-operation. The list is called clean if it contains no operations;
otherwise it’s called dirty. If a list is clean, then a modification makes it dirty; and if the
list is dirty then the flush operation makes it clean. Adding and removing text also makes
changes to a pending list. This allows text to be inserted and deleted as a child of some
node n, without needing to decompress n’s text containers. The changes to text are not
written until the user initiates a flush. Note that a query operation can be initiated without
a flush of any pending lists.

Low-level update operations are implemented via so-called boolean AU-operations, which
are appended to the appropriate pending list: insertValue(int value, int position), which in-
serts a value at position; deleteValue(int position), which deletes a value at position; and
modifyValue(int position, int amount) which modifies the value at position by increment-
ing it with the value of amount (note that this value may be positive or negative). In
addition, to support queries, there is an operation getValue(int position). This operation
will not be stored in the pending list; rather it is implemented by traversing the pending
list backwards and then using the appropriate annotation sequence.

Example.

Consider an XML document D of the form

<a> <d> t1 </d>

321

 Applications and Impacts

 <e> t2 </e> <d> t3 </d>
<c> t4 </c>

for which the corresponding document tree is shown as Figure 2a. The three remaining
trees shown in the same figure show the user perspective of executing high level update
operations; specifically: Figure 2b shows the result of executing insertNode(/a/b[1], d, 1).
Figure 2c shows the result of executing insertNode(/a, b, 2). Figure 2d shows the result of
executing insertTextNode(/a/b[1]/d[2], t5).

(a) document tree (b) insertNode(/a/b[1],d,1)

(c) insertNode(/a,b,2) (d) insertTextNode(/a/b[1]/d[2],t5)

Figure 2: Updates of an XML document D: user perspective

Figure 3 shows the changes in the annotated tree representing updates of D; specif-
ically: Figure 3a shows the original annotated tree. Figure 3b shows the annotated tree
with pending lists after executing insertNode(/a/b[1], d, 1). Figure 3c shows the resulting
annotated tree and pending lists after executing insertNode(/a, b, 2). Figure 3d shows the
annotated tree with pending lists after the execution of insertTextNode(/a/b[1]/d[2], t5).

Note that after a few insertions or deletions it may not be beneficial to write to a file, but in
general it is a “space versus time” trade-off: writes are costly in terms of time but preserve
space). It is as if the design had two layers, the top layer is not concerned with issues
such as “removed compressed annotations create a hole in a file”, while the bottom layer
is concerned with usage of the compressed file (which is maintained in a way similar to
heap management). This description does not provide details of the lower layer.

In the next section, we provide the results of tests performed on XSAQCT and some related
XML updaters.

322

INC 2010

�

� �

� �

�� �	
�� ��

	�

	�
��

�
	�
	
	�

(a) annotated tree

�

� �

� �

�� �	
�� ��

	�

	�
��

�
	�
	
	���
��

(b) insertNode(/a/b[1],d,1)
�

� �

� �

�� �	
�� ��

	�

	�
����
��

�
	���
�
��
	
	���
��
��
�
��

(c) insertNode(/a,b,2)

�

� �

� �

�� �	
�� ��

	�

	�
����
��

�
	���
�
��
	
	���
��
��
�
����
	�

��

(d) insertTextNode(/a/b[1]/d[2],t5)

Figure 3: Updates of an XML document D: implementation perspective.

4 Results of Tests

Because of the on-going nature of our project and the fact that currently it does not sup-
port indexing or any kind of caching, fair comparisons of query and update times is very
difficult. Instead, we conducted various preliminary tests on several open source applica-
tions (including Exist [Ea], BaseX [B10], QizX [QX], Sedna [Se], Oracle [Ob] and our
XSAQCT) to assess some sort of benchmark. When dealing with any kind of performance
comparison for XML compressors, one compares their application with others, using a
specific set of input documents. In this paper, for our experiment we use the file uwm.xml
(of the size 2.2M) from the Wratislavia XML corpus [W10]. In total, we performed 32
operations, shown in Table 1, where in each row the best updater’s time is shown in bold
face, and the second best result is shown in italics. To remove cache interference, tests
were performed five times, with the application being restarted after every trial, and we
computed the average result. Out of the 32 different trials, XSAQCT achieved the best re-
sults, as it placed first fourteen times, and it placed second fourteen times. QizX achieved
the second best results, as it placed first fourteen times and it placed second 10 times.
Oracle was placed first four times, and second 10 times.

5 Conclusions and Future Work

For the proposed framework to be generally applicable, it is paramount that storage consid-
erations are addressed. Storing the compressed document as a single file in a standard file
system has several weaknesses; for example querying may require storing offsets within a

323

 Applications and Impacts

Operation/Updater Exist BaseX QizX Sedna Oracle XSAQCT
I, /root, course listing, 0 184.8 115.99 1629.8 77.2 186.8 12.76
I, /root/course listing[1], course[1], 0 158 19.58 1071.6 73.2 7.87 1.37
Q, /root/course listing[1]/course[1] 90.8 5.62 1.85 23.2 6.23 4.55

T,/root/course listing[1]/course[1], “alpha” 93.2 20.73 989.4 74.8 8.37 0.94
Q, /root/course listing[1]/course[1]/text() 55.6 7 2 13.4 5.73 0.87
Q, /root/course listing[2]/course[1]/text() 54.6 8.22 0.85 20.8 5.64 1.21

R, /root/course listing[1]/course 53.4 16.7 984 95.8 6.51 1.07
R, /root/course listing[1] 62.2 17.34 986 83.2 7.34 11.83

Q, /root/course listing[1]/* 47.6 3.93 1.85 34 6.56 0.69
Q, /root/course listing[1]/course[1]/* 42.8 4.06 0.85 13.4 6.57 1.09

Q, /root/course listing[1]/course[1]/text() 46.8 6.42 0.85 15.2 7.54 1.29

R, /root/course listing[1]/note 191 122.24 1405.6 85.4 3.54 8.52

Q, /root/course listing[1]/course[1]/text() 158.8 4.48 1.4 12.8 6.41 4.91
Q, /root/course listing[2]/course[1]/text() 87 5 1 19 6.84 1.06

Q, /root/course listing[1]/title/text() 49.4 5.18 1 13.4 5.96 1.19

I, /root/course listing[1], course, 0 167.8 114.33 1346.4 82.8 3.99 11.49

Q, /root/course listing[1]/course[1]/text() 161.2 5.07 1.8 14.8 5.49 4.88

T, /root/course listing[1]/course, “216XXX” 122 23.12 915.6 76 6.93 0.93
Q, /root/course listing[1]/course[1]/text() 41.2 4.67 1.2 19.2 4.59 1.05
X, /root/course listing[1]/course 57.2 15.39 879.2 89.8 8.63 0.83
T, /root/course listing[1]/course, “216TM”) 41.2 21.46 900.8 85.8 8.51 0.85
Q, /root/course listing[1]/course[1]/text() 37.4 6.06 1.8 16.4 7.34 1.09
Q, /root/course listing[2]/course[1]/text() 44.8 4.55 1 10.6 6.18 4.62

Q, /root/course listing/course[1]/text() 755 93.27 70.2 989.8 82.3 315.02
R, /root/course listing[1] 400 117.44 1621.2 76.8 53.09 25.52
Q, /root/course listing[1]/course[1]/text() 197.8 5.22 2.6 11.6 6.39 4.67

Q, /root/course listing[4]/section listing[2]/* 76.8 5.78 0.55 30.6 6.6 1.35

Q, /root/course listing/course[1]/text() 1103 90.58 110.8 626.2 79.17 269.42
Q, /root/course listing[1]/section listing 69.8 4.42 0.85 24 7.08 1.06

I, /root, course listing, 0 54.6 22.83 1043.4 88.4 181.41 2.58
I, /root/course listing[1], course, 0 57.2 13.92 1032.6 72.6 7.29 1.26
Q, /root/course listing/course[1]/text() 690.8 83.19 75.6 535.8 79.96 184.61

Table 1: Results of the tests (time in milliseconds)

file to retrieve the required compressed container; and flushing the pending list may require
re-writing the entire file. Therefore, we will investigate storing the compressed document
through a specially-designed layer, implemented using either a file system or a database
(as appropriate, based on experimentation). We will also investigate compressing pending
lists.

In addition, we will investigate adding versioning of compressed XML documents, where
switching between different versions will not require full data decompression. When a
user decides that a series of updates form a new version, the pending list will be assigned
this version’s number. Any subsequent updates will then be included in the successive
version.

324

INC 2010

References

[ABC 03] Andrei Arion, Angela Bonifati, Gianni Costa, Sandra D’Aguanno, Ioana Manolescu,
and Andrea Pugliese. XQueC: pushing queries to compressed XML data. In Proceed-
ings of the 29th international conference on Very large data bases - Volume 29, pages
1065–1068, Berlin, Germany, 2003. VLDB Endowment.

[AKNG06] N. Aznauryan, S. Kuznetsov, L. Novak, and M. Grinev. SLS: A numbering scheme for
large XML documents. Programming and Computer Software, 32(1):8–18, 2006.

[B10] BaseX. http://basex.org/. Retrieved January 2010.

[bzi] bzip2. http://www.bzip.org/. Retrieved January 2010.

[DB2] DB2 pureXML. http://domino.watson.ibm.com/comm/research.nsf/pages/r.datamgmt.
innovation.purexml.html. Retrieved January 2010.

[Ea] eXist-db Open Source Native XML Database. http://exist.sourceforge.net/. Retrieved
January 2010.

[gzi] The gzip home page. http://www.gzip.org/. Retrieved January 2010.

[LMD05] Gregory Leighton, Tomsz Müldner, and James Diamond. TREECHOP: A Tree-based
Query-able Compressor for XML. The Ninth Canadian Workshop on Information The-
ory, June 2005.

[Mei] Wolfgang Meier. eXist: An Open Source Native XML Database. http://exist-db.org/
webdb.pdf. Retrieved January 2010.

[MFMD09] Tomasz Müldner, Christopher Fry, Jan Krzysztof Miziołek, and Scott Durno.
XSAQCT: XML Queryable Compressor. Montréal, Canada, August 2009. Balisage:
The Markup Conference.

[NdL05] M. Nicola and B. Van der Linden. Native XML support in DB2 universal database. In
Proceedings of the 31st international conference on Very large data bases, page 1174,
2005.

[Oa] Oracle Berkeley DB XML. http://www.oracle.com/database/berkeley-db/xml/index.
html. Retrieved January 2010.

[Ob] Berkeley DB XML Reference Guide: Architecture. http://www.oracle.com/technology
/documentation/berkeley-db/xml/ref xml/xml/arch.html. Retrieved January 2010.

[p10] DB2 pureXML. http://www-01.ibm.com/software/data/db2/xml/. Retrieved January
2010.

[paq] The PAQ Data Compression Programs. http://cs.fit.edu/˜mmahoney/compression/paq.h
tml#paq8. Retrieved January 2010.

[QX] Qizx, native XQuery database engine. http://www.xmlmind.com/qizx/. Retrieved Jan-
uary 2010.

[Sch] Marc Scholl. Native XML Processing. http://www.inf.uni-konstanz.de/dbis/teach
ing/ws0708/xml/24-Native.pdf. Retrieved January 2010.

[Se] Sedna XML Database. http://modis.ispras.ru/sedna/. Retrieved January 2010.

[W10] Wratislavia XML Corpus. http://www.ii.uni.wroc.pl/˜inikep/research/Wratislavia/.

[XQ008] XQuery Update Facility 1.0. http://www.w3.org/TR/xquery-update-10/, August 2008.
Retrieved January 2010.

