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Abstract: The Advanced Encryption Standard (AES) became the standard for en-
cryption to protect the sensitive information. With the increasing use of portable
and wireless devices and demanding information security needs in embedded sys-
tems, prompted efforts to find fast software based implementation of AES encryp-
tion/decryption capable of running on resource constrained environment in terms of
processor speed, code space, energy usage and in particular those portable devices that
have 32-bits ARM processor. ARM processor are most common for use in embedded
industry. In this paper we propose an implementation of AES with minimum number
of look-up tables in high level language C by performing a series of optimizations
and their effects to enhance time performances that leads to our final implementa-
tion achieving speed of 323 us to encrypt 128-bits block of plain text. We develop
experiments by making the reference implementation, as known from the technical lit-
erature, optimized first for the 32-bits ARM based platforms and then compared with
our final implementation. We analyze speed of AES, the leading symmetric block
cipher on ARM processor and shows that our implementation outperforms the refer-
ence implementation by more than 3 times. The simulation results of our optimized
implementation with the other reference implementation are compared and presented.

1 Introduction

Rijndael [DROO], an iterated block cipher algorithm designed by two Belgian cryptogra-
phers Vincent Rijmen and Joan Daemen, has been selected by NIST as the winner of the
Advanced Encryption Standard competition among fifteen candidates due to its security,
performance, efficiency, ease of implementation and flexibility. The AES developed to
replace the old Data Encryption Standard (DES). According to NIST, DES algorithm can
be easily broken in few hours with dedicated computer. Assuming that one could build
a DES Cracker machine that could recover an unknown DES key in one second (i.e. try
255 keys per second), then it would take that machine approximately 149 thousand-billion
(149 trillion) years to crack a 128-bits AES key [NQA]. To put that into perspective, the
universe is believed to be less than 20 billion years old.

Rijndael is a symmetric block cipher with a variable block length and a variable key length.
The block length and the key length can be independently specified to 128, 192 or 256-
bits. The AES consider only 128-bits legal block length. The Rijndael cipher algorithm is
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suited for an efficient implementation on a wide range of processors. AES is a substitution-
permutation network in general sense. Each round of processing in AES involves a byte-
level substitutions followed by byte level permutations. The nature of substitutions and
permutations in AES allows efficient software implementations of the algorithm on wide
range of platforms. The basic operations of the AES are simple. With the increasing use
of portable and wireless devices in the business and daily life, protecting sensitive infor-
mation via encryption is becoming more and more crucial. AES can be used as encryption
standard in portable communication devices.

The contribution of this paper is fast software implementation of the AES algorithm in C
with particular regard to 32-bits ARM [Ltd] processor. Efficient software implementations
of AES proposed so far are listed in [BBFT02, DK06, ABM04]. However in this work to
achieve faster speed than Version 1 (V1) [ABM04] we applied various optimizations tech-
niques to Gladman’s [Gla] AES implementation for low resource platforms. In this paper
our work aims at comparing the V1 which is the faster encryption available according to
[ABMO04] on the target platform with our fastest implementation. For comprehensive com-
parison we also applied series of optimizations on different portions of the V1 on target
platform.Now on we will call V1 as Newly Proposed V1. The time performances obtained
by simulation are summarized in tables, compared and discussed. Our work covers the
key setup and encryption / decryption of AES with 128-bits key size. This paper focuses
only on key setup and encryption, but the method extends in natural way.

The rest of the paper is organized as follows. In the next section we give a short description
of AES. Section 3 will describe the 32-bits ARM processor. In section 4, we shall discuss
optimizations on Gladman’s AES implementation for low resource platforms. Section 5
will describe the series of optimizations and their effects on V1. Section 6, will describe
details of the time performances for comparison and tools used for implementation. In
section 7, we summarize our results.

2 Description of AES Algorithm

This section provides a brief overview of the AES algorithm useful for understanding of
the subsequent optimizations, which will be described in section 4 and 5. AES algorithm
operates in rounds. A round is a fixed set of invertible transformations. The invertible
transformations are also known as layers [BBF+02]. The transformations that are applied
in each round are four. (1) round key addition step (2) the non linear step (3) the dispersion
step (4) the diffusion step.They are described as follows.

2.1 AddRoundKey

In this step, the 128-bits of the state array are bitwise XOR’ed with the 128-bits of the
round key. A core data structure of the algorithm is state array: it is 4*4 bytes matrix.
Each 128-bits round key is generated from the key schedule.

134



Security and Privacy

2.2 SubBytes

This transformation is non linear byte-by-byte substitution. It operates independently on
each byte of the state array. The goal of the substitution step is to reduce the correlation
between input bits and output bits (at the byte level).

2.3 ShiftRows

The ShiftRows transformation consists of (i) not shifting the first row of the state array at
all; (ii) circularly shifting the second row by one byte to the left; (iii) circularly shifting the
third row by two bytes to the left; and (iv) circularly shifting the last row by three bytes to
the left.

2.4 MixColumns

This transformation step replaces each byte of a column by a function of all the bytes in
the same column. More precisely, each byte in a column is replaced by two times the
value of that byte, plus three times the next byte, plus the byte that comes next, plus the
byte that comes next. The word next means the byte in the row below; the meaning of
next is circular in the same column. The transformation MixColumns requires matrix
multiplication in the field GF(2%).

3 ARM Processor

ARM [Ltd] is a 32-bits RISC microprocessor. ARM core is a high performance and low
power consumption processor. The low power usage is particularly due to the fact that
there is no cache, which can sacrifice performance. ARM is the industry standard for em-
bedded system market. It covers 75 of the market with more than 1 billion sold every year.
Their use in applications like digital radios, pagers, mp3 players and portable communica-
tion devices has necessitated software implementation of AES for the ARM. ARM is one
of the most widely used 32-bits processors in mobile devices.

4 Optimizations on Gladman’s Low Resource Implementation

In this section, we discuss important aspects of the Gladman’s code [Gla] and the optimiza-
tions that we performed on Gladman’s code to get a faster speed than Newly Proposed V1.
We shall discuss in this section the reasons behind each optimization. We do not take any
code-size or memory restrictions into account when designing the code for this platform.
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Furthermore, we do not restrict ourself to any specific ARM processor, the code is portable
among the ARM family of processors.

4.1 Use of Look-Up Tables

As mentioned in the AES proposal [DR], the algorithm can be considerably speed-up
by precomputing the part of the internal operations and storing the results in the look-up
tables. All the modular arithmetic of the AES can be reduced to a series of look-up tables
and exclusive-or operations. Almost all the efficient implementations [BBF+02, DK06,
ABMO04] that we looked at take this approach of using look-up tables. In our case we want
to speed up the algorithm with the minimum number of look-up tables. There are AES
implementations that uses the four kilo bytes of look-up tables .The use of lot of look-up
tables degrade the performance on the ARM processor.

ARM [Ltd] processor implements load / store architecture. Load / Store instructions can
load or store 32-bits word or an 8-bits unsigned byte from memory to register or from
register to memory. The data processing instructions manipulate data within registers.
Most data processing instructions can process one of their operands using the barrel shifter.
The duty of barrel shifter is to shift and rotate. Data processing instructions are processed
within the arithmetic logic unit (ALU).

A unique and powerful feature of the ARM processor is the ability to shift the 32-bits
binary pattern in one of the source registers left or right before it enters the ALU. Use of
pre-rotated tables cannot improve the performance neither, since the barrel shifter that can
be combined with data processing instructions reduces the effective cost of rotate instruc-
tions to zero. Use of such tables, in fact, increases the register pressure and possibility
of cache misses therefore degrade the performance on ARM processor.It has no benefit in
clock cycles. The look-up tables that we used in our case are three 256-bytes tables. One
for S-Box, one for InvS-Box and one 256-bytes table for the construction of finite field
elements.

4.2 Combinations of Transformations

Gladman combined the MixColumns and SubBytes transformations as well as the ShiftRows
and SubBytes transformations into two functions. These combinations are possible be-
cause the shifting of rows and mixing of columns are always the same and are independent
of the contents of the state. A large number of memory moves are eliminated by combin-
ing these transformations with the SubBytes transformation and by combining the round
transformations very fast efficient implementation can be achieved . This technique was
developed by Mark Malbrain and his contribution is acknowledged in Gladman’s code. By
making the parallelization of transformation we can speed up the process of encryption.
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4.3 Tuning Options

Gladman’s code has 3 options [DABOS] which can be changed prior to compiling the code.
These options are made possible using conditional preprocessor directives and modify the
code considerably before compilation. These options can be activated/deactivated by using
the #define preprocessor directive. These are briefly described below:

HAVE_MEMCPY: This directs the compiler to take advantage of the memcpy function
in the compiler’s standard library. In our implementation we turned off this option due to
bad repute of memcpy function regarding security features.

HAVE_UINT32: This directs the compiler to take advantage of 32-bits data types if avail-
able on the target platform. We use this feature in our implementation because ARM
supports 32-bits data type.

VERSION_1: This makes extensive use of local buffers within functions instead of ac-
cessing data through pointers. Gladman said that the use of this option purely depends
upon the targeting platforms regarding performance. In our implementation we have used
this option.

4.4 Code Specialization

Gladman’s code implements AES for 128 and 256-bits key sizes. In our implementation
we specialize the code only for 128-bits key.

4.5 Change Data Type Size

One of the tuning options as mentioned earlier is to take advantage of the 32-bits data
type. Gladman’s code supports data types of 8 and 32-bits. ARM supports 32-bits so we
use this option to get advantage. We observe a performance improvement with regards
to speed. On ARM it does not make sense to use 8 bit data type because it degrades the
performance.

4.6 Function Inlining and Use of Registers

It is a common optimization technique to speed up the performance. By making function
inline we can avoid the function call and return overhead. It increases performance at the
cost of code size. The reason behind this optimization is that all the portions of the AES
algorithm are coded into single function. ARM supports inlining with the help of key-
word __inline. In our implementation we make extensive use of registers in order to avoid
memory moves to speed up the process of encryption. We kept the state array explicitly in
registers.
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4.7 Key Schedule

Round keys are derived from the process known as ‘key scheduling’. There are two options
to implement the key schedule: (1) key unrolling (2) On the fly key generation. The option
we use in our implementation is key unrolling. We describe some reasons of not using
the On the fly key generation approach. (a) Costly in clock cycles because key schedule
have to performed for each data block to encrypt. (b) Need 16 bytes of additional memory
to store the last round keys for the decryption. On the other way if you do not want to
store the last 16 bytes of round keys, you need to calculate the key schedule again for the
decryption and have to use it in reverse order.

5 Optimizations on Standard AES Algorithm

The original AES submission defines two implementation strategies. The first strategy
which is known as V1 according to [ABMO04]. V1 employs byte substitution tables only
(S-Box and InvS-Box). V1 implements the nonlinear layer using byte substitution tables
and implements the MixColumn transformation making repetitive calls to the Xtime oper-
ation. Xtime is a macro. V1 is also known as the compact version of the AES in technical
literature. V1 is the fast encryption available on ARM platform.

We performed several optimizations on AES and key schedule. We also applied the stan-
dard techniques described in [Eff] to optimize the machine code generated by the ARM
compiler. The main design goal is to optimize the implementation for speed.In this section
we shall discuss the series of optimizations and the intuition behind them.

The compact version of the AES uses only two 256 bytes look-up tables. One for the
S-BOX and other for the InvS-BOX. Our implementation also uses two 256 bytes look-up
tables plus 10 bytes table for the round constant.The round constant is a word in which
the three rightmost bytes are always 0. Thus the effect of an XOR of a word with round
constant is to only perform an XOR on the leftmost byte of the word. The round constant
is different for each round.

The S-BOX, which is invertible, is constructed by composing two transformations in
GF(2%), an inversion and an affine function. One approach of implementing S-BOX is
dynamically but it requires computation resources and it hurts the speed of the AES. Im-
plementing S-BOX with the help of look- up tables is efficient in terms of time and space.
In this implementation we restrict ourself with only two look-up tables plus 10 bytes of
round constant. There are AES implementations that uses the four kilo bytes of look-up
tables. As mentioned earlier that the use of lot of look-up tables degrade the performance
on the ARM processor.
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5.1 MixColumns

Different implementation strategies are available to implement this step. The compact
version implements the MixColumns transformation making repetitive calls to the Xtime
operation. Xtime is a macro. The multiplication with 02 can be implemented at byte
level with a left shift and a conditional bitwise XOR with 1b. We restrict ourself by using
this approach in our implementation because in this approach the execution time purely
depends upon the input plain text. The other approach uses the log and anti-log table. We
mentioned earlier that use of too many look-up tables degrade the performance on ARM
processor [Ltd], and is considered unsafe, as monitoring the accesses to the look-up tables
may in some cases allow to infer the key [BBFT02]. The transformation MixColumns
requires matrix multiplication in the field GF(2%).

5.2 ShiftRows

This transformation is straightforward to implement. The first row, row 0, is not rotated.
Row 1 is rotated to the left by 1 byte position; row 2 is rotated to the left by 2 byte positions;
row 3 is rotated to the left by 3 byte positions.

5.3 AddRoundKey

This transformation is also straightforward to implement. In this transformation, a round
key is added to the State matrix by a simple bitwise XOR operation, that is, a sum in the
field GF(2%). Each round key is obtained from the key schedule.

5.4 KeyScheduling

The process of deriving a round key from the cipher key is known as key schedule. There
are two options to implement the key schedule: (a) Key Unrolling (b) On the fly key
generation. The option we use in our implementation is key unrolling. The reason for
using the key unrolling is to speed up the time for making the key schedule. In our de-
sign we are focusing on speed and on the ARM enough memory is available to hold the
unrolled key i.e. 176 bytes in our case of 128-bits AES encryption. The AES algorithm
describes the calculation order of deriving the round keys from the cipher key in column
wise fashion [DROO]. To speed up the calculation of deriving a round key from the cipher
key,[LKCYO03] proposed a method of calculating round keys in row wise fashion. By re-
arranging the calculation order we can save 50% of memory read write moves.

In our implementation we use this [LKCYO03] approach of calculating the round keys to
increase time performances. In our implementation we also use direct addressing method
for doing index calculations to further boost the process of encryption. According to [Ltd],
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16 out of 37, 32-bits registers are available at a time in ARM. In our implementation we
make extensive use of registers in order to avoid memory moves to speed up the process
of encryption.

6 Performance

This section illustrates our optimized version of AES algorithm that runs more than 3 times
faster than Newly Proposed V1 implementation . We present results and the comparison
with the Newly Proposed V1 implementation which uses the standard AES formulation
combined with the row wise key scheduling technique [LKCYO03]. In order to get the
results found in tables below, we made a 128-bits key setup and encryption 100 times.
The functions that we used for the calculation of the accurate timing are the QueryPerfor-
manceCounter() and QueryPerformanceFrequency().To simulate a real world environment
we started counting times before a call to a function performing the desired operation, such
as encryption, decryption or key setup [DK06]. We stopped counting after the function was
exited.

Since the integrity of the AES algorithm is of prime importance, these optimizations only
aim at streamlining the program flow so as to achieve the same mathematical operations
using fewer processor instructions. This ensures that our optimized implementations are
in strict accordance with the AES specification. We verify the correctness of both imple-
mentations by comparing them with the test vectors included in [FIPO1].

As the development software we used Microsoft Visual Studio 2008 with Microsoft Win-
dows Mobile 6 Professional SDK. It uses the most popular ARM design ARM7TDMI.
We used C language for the implementations.Table 1 shows the encryption speed of both
methods when using 128-bits plain text block. Our final optimized implementation is more

Method Speed (min , avg) (us)
Our Final Implementation (323, 545) s
Newly Proposed V1 (1200, 3400) us

Table 1: 128-Bits Encryption Speed.

than 3 times superior in speed than Newly Proposed V1 which is also optimized with re-
gards to ARM as shown in Table 1. Table 2 shows the speed to calculate round keys with
key unrolling [128-bits key] When calculating the key expansion, we found that our final

Method Speed (min , avg) (us)
Our Key Schedule (Column Wise Fashion) (120, 170) us
Newly Proposed V1 (Row Wise Fashion) (1590, 4000) ps

Table 2: 128-Bits Key Schedule.

implementation outperforms the suggested key schedule process i.e. row wise calculation
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[LKCYO03] of Newly Proposed V1 by more than twenty times on average as shown in Ta-
ble 2. In order to simulate the real world scenario, the scenario is to read data from the file
that is stored on the disk and apply encryption with recommended mode of operations. The
mode of operation we use in the implementations is cipher block chaining mode (CBC).
Table 3 shows the result of encryption using CBC. By analyzing the Table 3, the result

‘ ‘ Our Final Implementation ‘NewlmepnsedVIImp]emenlatiou

Size of Data (bytes) Speed(min , avg) ‘(ms)’ Speed(min , avg) “(ms)”

16 (0.73,1.07) (1.20,3.40)

\ 32 | (079,117) [  (253,370) |
| 64 | (081,125 | (470,520) |
\ 128 | (091,153) [ (5.58,880) |
\ 256 | (1351900 [ (10.91,16.90) |
\ 512 [ (237,265 [ (20.93,31.90) |
| IKiloBytes [ (3.74,425) [  (39.68,60) |
| 2KiloBytes | (6.92,7.70) | (8828,117) |
| 4KiloBytes | (11.51,14 [  (160,201) |
| 8KiloBytes | (1741,27) | (315,345 |
| 16KiloBytes | (34.06,51) |  (669,690) |
| 32KiloBytes [ (77.62,89) [ (1283,1380) |
[ 64KiloBytes [ (134,166) [ (2529,2710) |
[ 128 KiloBytes | (260,290) | (5069, 5450) |
[ 256 Kilo Bytes | (533,570) | (10130, 10584) |
[ 512 Kilo Bytes | (1053,1090) | (20459, 20800) |
| 1MegaBytes | (2117,2170) | (42191,44113) |
| 2MegaBytes | (4318,4442) | (83827,87645) |
| 4MegaBytes | (8374,8650) | (161355,193902) |
| 8 Mega Bytes | (16748, 17528) | (347872, 393903) |

Table 3: Encryption Speed Using CBC.
shows that our final implementation outperforms the Newly Proposed V1 for every data

block size. More precisely for the data block of above or equal 1 MB our implementation
is nearly 20 times faster than Newly Proposed V1.

7 Conclusion

An optimized version of the AES algorithm has been presented, coded in C and evaluated
by simulations on ARM processor. We have rewritten the V1 by combining it with the
new way of deriving a round keys that operates row wise, in order to minimize memory
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moves. We have shown that our implementation outperforms the Newly Proposed V1
which is the fast encryption available on the target platform. We have also shown the
comparison by considering the real life scenario in which user have the option to select
file of any size ranging from 16 bytes to 8MB from the storage and perform encryption
using CBC. Our final implementation preserves the flexibility of the AES and exhibits the
highest encryption performance on ARM processor.

Some implementations perform a single encryption and /or decryption faster than other
but fell behind for the bulk of encryption / decryption. It has been shown that our imple-
mentation works well in doing encryption either for one block of plain text or for S8MB
of file. The ultimate goal is to provide an optimal secure storage and communication
infrastructure on mobile devices.
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