
A conceptual intrusion monitoring architecture and thoughts
on practical implementation

P.S.Dowland and S.M.Furnell

Network Research Group, Department of Communication and Electronic Engineering, University of Plymouth,
United Kingdom

e-mail : sfurnell@plymouth.ac.uk

Abstract

The paper presents a conceptual description of the
Intrusion Monitoring System (IMS) architecture, which
is designed to facilitate detection of system penetration
and other anomalous activity in a networked
environment. The architecture is based upon eight
functional elements, distributed between a monitoring
host and a series of monitored client systems. The
discussion also considers how the approach could be
integrated within the Windows NT environment.

1 Introduction

The concept of real-time intrusion monitoring has been
of interest in the IT security domain for a number of
years, with the original idea having been proposed by
Denning (1987). Such an approach is valuable as a
means of combating a number of classes of system abuse,
including penetration by unauthorised persons and
misuse of privileges by registered users. In addition,
abuse may be perpetrated by malicious software, such as
viruses and Trojan Horse programs. Although a number
of IDS have been developed (Mukherjee et al. 1994),
these have generally targeted large systems or specific
domains (e.g. military). Commercial implementations
are generally restricted in their monitoring functionality.
However, the increasing interconnection of corporate
systems, coupled with reported increases in computer
abuse incidents (CSI 1999), suggests that the use of more
advanced intrusion monitoring functionality would be
advantageous. This paper presents the conceptual
architecture of the Intrusion Monitoring System (IMS),
which aims to detect anomalous activity in a networked
environment, followed by consideration of how to realise
the approach in practice under Windows NT.

2 Intrusion Monitoring System overview

The IMS architecture was originally proposed by Furnell
(1995) and is based upon the concept of a centralised
Host handling the monitoring of one or more Clients on

local workstations. The Clients collect the required data
relating to system activity and respond to any suspected
intrusions detected by the Host. Monitoring is based
upon the comparison of current activity against two
categories of stored information, namely user behaviour
profiles and generic intrusion rules. These approaches
are common to other intrusion monitoring architectures,
such as the Intrusion Detection Expert System described
by Lunt (1990). User profiles could conceivably hold a
range of identification, authentication and behavioural
information relating to registered users. Examples of
potential characteristics would include system access
times and locations; typical levels of system resource
utilisation; application and file usage; methods of user
interaction; and biometrics (i.e. physiological and
behavioural characteristics). Biometric monitoring is
considered to be particularly appropriate to prevent
impostor penetration and a number of options exist that
could be employed in this context, including keystroke
analysis, face recognition and voice recognition (Cope
1990). Other well-known biometrics, such as fingerprint
recognition, are less strongly favoured in the IMS
context, as less opportunity exists to integrate them in a
manner that is transparent (and, hence, non-intrusive) to
the legitimate user.

Some classes of intrusion or misuse can be trapped
without identifying departures from historical patterns of
user behaviour. The occurrence of some events will be
suspicious in themselves and, therefore, the system
requires a means to monitor for these as well. Examples
of generic indicators would include consecutive access
violations, out of hours access, account overuse /
simultaneous access, use of inactive accounts and
extensive use of help systems. While none of these alone
would provide sufficient indication to state that an
intrusion was in progress, the combination of two or
more could be more persuasive. In the IMS context,
these attack signatures would be represented via
Intrusion Rules that, if satisfied, would increase the alert
status of the system.

3 The IMS Architecture

Anomaly Detector. The Anomaly Detector analyses
activity for suspected intrusions, comparing it against the
behaviour profile of the current user’s (claimed) identity,
as well as against the generic intrusion rules. The
detector is comprised of further sub-modules, each
handling specific monitoring tasks (e.g. keystroke
analysis, tracking of resource usage etc.). The detector
maintains an alert status table, with entries existing
throughout the life of each user-initiated session or
process to indicate the level of detected anomalies and
thereby the confidence of a potential intrusion. This
information would be examined and updated each time
activity data relating to the relevant user / process is
analysed. The alert status level would increase in
response to departures from the user-specific behaviour
profile or the satisfaction of generic intrusion indicators.
The level would be reduced after successful challenges
or after a sufficient period of normal activity to allow the
system to discount the previous anomaly. The alert
status level can be linked with the types of activity that a
subject is permitted to perform. In this way, a phased
reduction of permitted behaviour would occur as the
level increases. Sensitive activities / information could,
therefore, be denied if doubt exists over the legitimacy of
the current user, whilst still allowing more mundane
activities to continue. The approach would demand that
a maximum alert status threshold be associated with each
of the activities or objects that IMS is to control.

Profile Refiner. User behaviour may legitimately alter
over time. The Profile Refiner aims to provide an
automatic means to account for such changes, using
neural networks to analyse and recognise behavioural
characteristics that might not be apparent to a human
observer. In this way, the effectiveness of the system has
the potential to improve over time. It might also be
possible to determine which of the profiled
characteristics provide the best discriminators for each
user and thereby establish various levels of behavioural
indicator (with the primary level representing the most
reliable verifiers). This hierarchy could also be extended
to allow for the fact that some characteristics may
represent negative indicators (i.e. those that, despite
refinement, are found to cause a high level of false
rejection).

It would be undesirable for the Profile Refiner to utilise
data that is later found to be anomalous. Refinement
should, therefore, only take place after the termination of
non-anomalous user sessions. User-specific profile
records would also incorporate a series of flags to
indicate whether the individual behaviour characteristics
are ready to be used in supervision or still being

developed. This will allow a gradual training period to
be defined for new user profiles without the IMS
continually generating intrusion alerts (the flags would
also allow a specific ‘refinement only’ period to be
established for existing profiles that have proved to be
inadequate for the legitimate user). The purpose of
associating flags with each profile characteristic is so that
some degree of monitoring could still continue whilst
other aspects are being (re)trained.

Recorder. The Recorder handles the short-term storage
of user-related activity data during a session and focuses
specifically upon the collection of data relating to the
profiled characteristics of a given user (e.g. collection of
keystroke data in relation to the typing profile). Upon
termination, the information will be used as input to the
Profile Refiner, provided that the session was not
considered anomalous. In the event of a proven
anomaly, the Recorder can discard the session data.

Archiver. The Archiver collects data relating to all
system activity and stores it in a long-term archive,
providing a more permanent record of activities and
suspected anomalies. The storage occurs regardless of
whether sessions / processes are regarded as anomalous
and details of all security relevant events are archived.
Such events include login failures, intrusion alerts,
authentication challenges and suspended sessions.
However, in order to conserve storage space, it may be
desirable to only record details of certain types of event.
The Archiver is therefore configurable to suit the
preferences of the organisation involved (note that the
same would not be true for the Recorder as this would
always need to collect information on any activities for
which profile refinement may later occur). The long-
term retention period of archived details would be
organisation-dependent.

Collector. The Collector is responsible for obtaining
information on all relevant client-side activity. The
module must operate in such a way as to encompass, but
be independent of, all system applications. It is
envisaged that this could be best achieved by
implementation at the operating system (OS) level, such
that key events also lead to IMS notification. For
example, a significant proportion of data collection could
be based around the interception and redirection of
selected OS service requests (such as file input / output,
application execution, keyboard input). In some cases,
data could be obtained directly from audit trail records –
as in previous systems, such as Wisdom & Sense
(Leipins and Vaccaro 1989.). However, with certain
aspects (e.g. keystroke analysis) the required information
will not be held by audit trails and implementation may,
therefore, require a significant number of OS links.

Whilst this would serve to make this aspect of IMS very
system specific, it would be more efficient than
attempting to modify individual applications to provide
relevant information to IMS.

Responder. This module resides in the Client and
responds to anomalies detected by the Host. The
operation centres around the continuous monitoring of
the alert status transmitted by the Host, with increases in
the level triggering appropriate actions. The nature of
response at different levels would vary and a detailed
discussion of the possible options is beyond the scope of
this paper. However, appropriate responses might
include: issuing of an explicit challenge for further
authentication; recording of details in an intrusion log for
later investigation; notification of the system manager;
phased reduction of permitted behaviour; locking of the
intruder’s terminal; and termination of the anomalous
session / process.

Communicator. The Communicator provides the
network communications interface between the Host and
the local Client(s). The principal functions include
transmitting user and process information to the Host and
then subsequently keeping the Client(s) informed of the
current alert status. If implemented in a heterogeneous
environment, the Client side would be responsible for
resolving any operating system differences that exist
within the monitoring domain, so that information could
be presented to the Host in a consistent, standardised
format. The actual communication could then be
handled via a standard sockets approach, with protection
provided by a technology such as Secure Sockets Layer
(Frier et al. 1996).

Controller. This module allows the operation of the
IMS system to be configured. On the Host side, this
applies to the Anomaly Detector (e.g. behaviour
characteristics to utilise, generic rules in operation), the
Profile Refiner (e.g. frequency of refinement, acceptable
thresholds for challenges) and the Archiver (e.g. level of
detail required, specific events to record or exclude from
logging). On the Client side, configuration relates to the
Collector (e.g. the level of data collection, which could
be automatically linked to the characteristics being
monitored by the Anomaly Detector) and the Responder
(e.g. the level of response required at each alert status
level). These settings would be controlled and recorded
through the Host system. Local Client(s) would then be
configured at the time of session initiation. Other
features would also be provided under the auspices of the
Controller, including user profile management and
update of the generic rulebase.

4 IMS Implementation

Work is currently being conducted to develop an
implementation for Windows NT. This requires
replacement of the Graphical Identification aNd
Authentication (GINA) Dynamic Link Library (DLL) -
the interface through which a user can provide his/her
identification, typically in the form of a username and
password. However, it can be replaced with any desired
authentication method (e.g. commercial products are
available using fingerprint and faceprint methods). In
addition to the GINA replacement, the IMS would also
require software to provide the required continuous
monitoring, together with a remote security server. The
security server would be used to store, maintain and
update the user profiles. This server would process all
authentication requests together with local system audits
and updates to profiles. This role is slightly different to
that of a network server, which usually only authenticates
requests for access at the beginning of a session. Instead,
the security server would be responsible for ongoing
authentication throughout a session. A user login would
be performed locally (or remotely via a domain
controller) and once the user’s credentials are confirmed
the monitoring program would be loaded to provide
continuous user authentication. To prevent tampering,
the IMS system would store user profiles remotely on the
security server. These would be encrypted and
downloaded at login (although for higher security the
profiles could be maintained on the server with
authentication requests being handled by the server). To
ensure monitoring hardware has not been tampered with,
a local machine audit can also be initiated together with
checks for dependent entries in configuration files or
registry keys.

To reduce network traffic, it is envisaged that the user
authentication would be performed on the local computer
with only warnings or profile updates being fed back to
the security server. Under certain scenarios it may be
necessary to lock local computers if contact is lost with
the security server to ensure an intruder had not removed
a computer. However, it should be noted that this creates
a weak point and appropriate measures will be needed to
prevent a single server stopping the entire network. This
could take the form of a backup server, in a similar
fashion to a secondary DNS server. Alternatively, the
range of facilities available to the user can be restricted
until they can be re-authenticated.

Once a user has been authenticated by the replacement
GINA DLL, the IMS client would be activated. The IMS
client would then check the IMS security server (host)
for the users monitoring characteristics and rules, to
allow it to select the most appropriate monitoring

programs. At this point, the selected characteristics
would be loaded and initialised. To ensure ease of
implementation and future modification, each distinct
monitor program would be implemented as a system
DLL. Taking the keystroke analysis example, the
monitor program would install a system-wide hook to
intercept all keystrokes received by the keyboard buffer
and pass these to an analysis algorithm within the DLL.
To ease the processing burden, the DLL would pass
periodic samples of keystroke activity (either time or
quantity based) to be analysed. The results of this
analysis would then be passed on to the IMS client
program to be either compared to the local copy of the
user’s profile or to be returned to the IMS Host for
remote verification and subsequent action. In the event
that the IMS detects a potential intruder, a call can be
made to the GINA DLL to provide a request for further
user authentication. (e.g. question and answer challenge
or biometric identification request). As the GINA DLL
provides the login interface for NT, it is impossible to
perform a local user login without authenticating via the
GINA DLL. This can be used to enforce a variety of
security rules. For example, the system may refuse login
without the presence of the IMS host, the system may
only accept a user once a secondary authentication has
been made or the system may disallow local logins if
monitoring hardware (e.g. a camera) has been removed.

Under Windows NT, the Anomaly Detector, Profile
Refiner, Recorder and Archiver would be implemented
on the IMS Security server (Host) as a software suite. To
facilitate future upgrades, each component would be
contained within a separate DLL, with a front-end
provided through a single executable. Depending on the
size of the system being monitored, it may be necessary
to distribute the tasks over multiple hosts to cope with
the level of data analysis and profile updating. It may
also be beneficial to implement these programs as
services under NT – ensuring they are loaded at host
boot-up. The Collector would be implemented as a
mediator on the Client, collecting information via hooks
that intercept system messages (e.g. keystrokes, mouse
movements etc.) and forwarding this information on to
the Communicator. This would again be held in a DLL,
which would be called by the replacement GINA. The
Responder would be implemented within the GINA DLL
and provide a replacement login interface for NT. This
would also interface to the Communicator and Collector
for data acquisition and client-host communication. The
Communicator provides the interface between the client
and server IMS software. It would be implemented as a
shared DLL (used by both client and host). The
Communicator would use standard TCP/IP
communication, with all data being encrypted using a
standard algorithm. The Controller provides a

management interface to the IMS server software and
would be implemented on the host as a single executable
linking to the Anomaly Detector, Profile Refiner,
Recorder and Archiver DLL’s. Further details of the
practical implementation approach can be found in
Dowland and Furnell (2000).

5 Conclusions

Intrusion detection systems have the potential to provide
an important contribution to system security, protecting
against abuse by both external persons and organisational
insiders. The IMS architecture represents an example
approach and the paper has sought to describe the main
functional elements. A system such as IMS is considered
to represent a useful addition to Windows NT, which
increasingly has a role in enterprise-level IT and, hence,
an increasing requirement for strong protection. The
paper has provided an indication of how IMS would be
realised in the NT environment. The detailed mapping
of the IMS approach to the NT architecture is currently
in progress.

References

Cope, B.J.B. 1990. "Biometric Systems of Access
Control", Electrotechnology, April/May: 71-74.

CSI. 1999. “Issues and Trends: 1999 CSI/FBI Computer
Crime and Security Survey”, USA, March 1999.

Denning, D.E. 1987. “An intrusion-detection model”,
IEEE Transactions on Software Engineering, SE-
13(2):222-232.

Dowland, P.S. and Furnell, S.M. 2000. “Enhancing
Operating System Authentication Techniques”,
Proceedings of INC 2000 (3-6 July, Plymouth, UK).

Frier, A.; Karlton, P.; and Kocher, P. 1996. “The SSL
3.0 Protocol”, Netscape Communications Corp., Nov
18, 1996.

Furnell, S.M. 1995. Data Security in European
Healthcare Information Systems. PhD Thesis.
University of Plymouth, UK.

Leipins, G.E and Vaccaro, H.S. 1989. “Anomaly
Detection: Purpose and Framework”, In Proceedings
of the 12th National Computer Security Conference
(USA), 495-504.

Lunt, T.F. 1990. “IDES: An Intelligent System for
Detecting Intruders”, In Proceedings of the
Symposium: Computer Security, Threat and
Countermeasures (Rome, Italy, Nov. 1990).

Mukherjee, B.; Heberlein, L.T.; Levitt, K.N. 1994.
“Network Intrusion Detection”, IEEE Networks 8,
no.3: 26-41.

