
University of Plymouth, UK, 24-28 November, 2010

43

Agile Limitations and Model-Driven Opportunities for
Software Development Projects

K.Mairon1,2, M.Buchheit2, M.Knahl2, S.Atkinson1, S.M.Furnell1 and U.Schreier2

1Centre for Security, Communications and Network Research,
University of Plymouth, Plymouth, United Kingdom

2Furtwangen Research Node, Faculty of Business Information Systems
Hochschule Furtwangen University, Germany

e-mail: klaus.mairon@hs-furtwangen.de

Abstract

The development of business applications has become increasingly complex and cost-
sensitive. Thus discussions about the appropriate software development process model and the
possibility to increase efficiency are frequent. This paper summarizes the limitations of agile
process models and analyses how the limitations can be overcome through the concepts of the
Model-Driven Software Development. Finally there is an outlook to the further research with
the intention to combine agile and model-driven concepts.

Keywords

Agile Software Development, Software Development Process Model, Model-Driven
Software Development

1. Introduction

Today the development of business applications is influenced by increased project
complexity, shortened development cycles and high expectations in quality
(Baskerville & Pries-Heje, 2004). Rising costs in the software development are an
additional motivation to improve the productivity by the choice of a suitable
development process (Jones, 2008).

In the development of complex applications models are of great importance. Models
reduce complexity by abstraction. Additionally models offer the possibility to build
different views onto an application. If models are sufficiently formal they are
suitable for the automated transformation into source code. For this reason an
important acceleration and quality factor in the software development is attributed to
the Model-Driven Software Development (Stahl and Völter, 2005). On the other
hand Model-Driven Software Development requires quite high initial work for the
definition of meta-models, domain-specific languages and transformation rules for
the code generation process.

A different approach to improve productivity is the use of agile process models like
Scrum, Extreme Programming (XP) or Feature Driven Development (FDD) (Lindval
et al. 2004). For these process models an early production of source code and the

Proceedings of SEIN 2010

44

adjustment of executable partial results are important aspects of the process. The
communication with the end user and the direct feedback are the most important
success factors for a project and facilitate quick reactions on requirement changes
(Eckstein, 2010). In agile methods modelling often plays a subordinated role. The
requirements will be documented via “user stories” (XP) or “features” (Scrum,
FDD). They are summarized either in Product- or Sprint-Backlogs (Scrum)(Cohn,
2005) or in Feature-Sets (FDD) (Coad et al. 1999). This doesn’t mean that there is no
documentation or modelling in the development process. But only FDD describes
modelling as an explicit step in the development process.

In the development of large and in many cases complex business applications it is
common practice to use more formal process models with strong administrative
aspects, such as for example the Rational Unified Process (RUP) or the V-model.
However, Eckstein describes in (Eckstein, 2004) that agile process models can be
used in large projects instead of the heavyweight process models. This raises the
question to what extend the usage of models and the Model-Driven Software
Development can be integrated into the agile development process. In the
heavyweight software development processes like RUP modelling is a substantial
part of the process and the technique of the Model-Driven Software Development
may be integrated into these processes well. But in the less formal process models
like Scrum there is no specified approach to integrate Model-driven Software
Development. Another challenge is if the development team is distributed to various
locations.

The paper will discuss the limitations of agile process models and how Model-
Driven Software Development can assist these processes to get a successful high-
quality and maintainable overall result. Based on three weaknesses of agile process
models is shown how these can be mitigated by typical MDSD-technologies (e.g.
through the use of domain-specific languages, or refactoring at the architecture
level). For this, the paper will outline the first approaches and further steps of a
corresponding research project.

2. Limitations of Agile Development Processes

In (Ramesh et al. 2006) some challenges for the application of agile development
processes in large (especially distributed) teams were identified. As an example there
is the conflict between communication need and communication independence.
Agile development processes are based on informational communication rather than
detailed documentation. But in large projects with many team members there is a
need for formal methods such as detailed specifications or architectural design to
give the developers the information needed. Also in (Turk et al. 2002) the
importance of face-to-face communication in projects is indicated as a limitation of
agile processes for distributed teams.

In (Turk et al. 2002) the authors explain several limitations for agile processes.
These are amongst others:

University of Plymouth, UK, 24-28 November, 2010

45

• No or limited/poor support for distributed development.

• No process support to identify reusable software components.

• Problems in refactoring large and complex software systems.

In the following these points are clarified.

2.1. Agile principles in distributed development projects

The so-called agile principles (Agile Alliance, 2001b) underpin the value system of
the Agile Manifesto (Agile Alliance, 2001a). They give guidance on the
implementation of an agile approach. However, principles such as “continuous
delivery of valuable software” lead to a variety of challenges for distributed projects.

Therefore, the early and continuous delivery of software requires a stronger
collaboration between all locations as in non-distributed projects. To build a software
release across different geographic locations is more difficult than if the team
members would sit together. The challenge is, not to accomplish several individual
systems on the various sites but one coherent system.

Furthermore, it is very difficult to achieve a close cooperation between business
people and developers. In addition to the spatial distance there are often also cultural
differences, and large differences in time zones can complicate the cooperation
further. Nevertheless, all project members must get a common understanding of the
business requirements. In (Eckstein, 2010), the author describes different roles (e.g.
the “traveller”) to enhance the communication and collaboration in distributed
projects.

2.2. Problems creating reusable software components

In agile processes the focus is on the development in short cycles and an early
delivery of valuable software. This precludes developing generalized solutions (Turk
et al 2005). But it is clear that reusability could yield long-term benefits. According
to (Turk et al. 2002) the development of reusable software components or
generalized solutions is best assigned in teams that are primarily engaged in the
development of reusable artifacts.

(Turk et al. 2002) refers to a study (Basili and Rombach, 1991), after which it is best
to separate the product development from the development of reusable software
components. The development of reusable software components requires a special
attention to the quality, because errors in these components are often of greater
relevance. In fact it is desirable to develop reusable components in a timely manner,
but after (Turk et al. 2002) it is not clear how agile methods can be adapted
accordingly. A possible solution to this problem is discussed by (Hummel and
Atkinson, 2007). The authors propose to integrate the identification of reusable
components tightly to the test-driven development cycles.

Proceedings of SEIN 2010

46

2.3. Problems in refactoring large systems

Agile methods are based on the premise that good design is achieved through
constant refactoring (Fowler, 1999). This cannot be sustained in large complex
systems. The increasing dependencies between software components make the code
refactoring over the entire application costly. At the same time it increases the risk of
errors. (Turk et al. 2002) also refers to software in which functionality is so closely
coupled and integrated that it isn’t possible to develop the software incrementally. In
these cases can also be developed iteratively, but the code parts that are created
within an iteration will always be incomplete.

In agile projects Test Driven Development (TDD) is a well-proven method to reduce
the risk of errors during the refactoring process. But, with the increasing complexity
and the growing number of dependencies between components the effort for the
maintenance of test cases increases too. Incomplete code parts will complicate this
additionally.

3. Agility and Model-Driven Development

In below it is to be shown how it is possible to support the agile principles with
Model-Driven Software Development (MDSD).

• “Our highest priority is to satisfy the customer through early and
continuous delivery of valuable software.” The Model-Driven Software
Development starts with the definition of the domain architecture and the
derivation of the transformation rules. This means a certain lead-time before
a first executable result can be delivered. However, (Stahl & Völter, 2005)
recommend deriving the domain architecture from a prototype or a
reference implementation. This prototype can be used as a first delivery to
the customer and is already providing valuable feedback for further
development. If the prototype is developed incrementally, the project will
get feedback continuously, and the architects can develop the domain-
architecture in parallel.

• “Business people and developers must work together daily throughout the
project.” The close cooperation between business people and developers
can become more intensive by the modelling. When using a domain-
specific language (DSL) this is still more strongly accentuated. Mistakes
can be detected more quickly because the developer and the domain expert
are talking at the same abstraction level. In (Ambler, 2002) the author
argues that the communication between developers and business people is
the primary reason for modelling and emphasizes the advantages of the
model as a basis for reviews and feedback sessions.

• “Continuous attention to technical excellence and good design enhances
agility.” A frequent criticism at the Model-Driven Software Development is
that the developers have less freedom for their own choices in the

University of Plymouth, UK, 24-28 November, 2010

47

development of the software. On the other hand high quality is guaranteed
by the automated transformation from models into code and the
standardized implementation (Stahl & Völter, 2005).

• “Working software is the primary measure of progress.” As explained in
(Stahl & Völter, 2005) the creation of executable software can be
accelerated significantly, because of recurring tasks that are automated. The
developers can focus on the implementation of business logic.

In addition, the MDSD helps to mitigate the limitations of agile software
development processes.

3.1. Reusing domain artefacts

In the context of Model-Driven Software Development two aspects must be
considered to support building reusable software components: the domain-
architecture and the development of business logic.

In addition to the application architecture the domain architecture is an important
artefact of the Model-Driven Software Development. According to (Stahl & Völter,
2005) the domain architecture is defined as the aggregation of the meta-model of a
domain and a platform with the corresponding transformations and tools. The
domain architecture defines the concepts that will be formally supported in the model
and how those are mapped on the given platform.

The development of the domain architecture should be implemented in parallel to the
application development. An essential part is the reference implementation from
which the transformation-rules are derived. The reference implementation has a
much higher relevance as a conventional prototype. Together with the reference
model or reference design, it demonstrates the application and implementation of the
domain modelling language.

The domain-architecture itself is a reuse of architectural elements. The development
of the DSL and the derivation of the relevant transformation-rules assist the
identification of reusable components and modules.

During the application development, the modelling may help the developer to focus
on the business logic and the semantics. Because of the higher abstraction level it is
easier to identify reusable business components.

3.2. Refactoring at an higher level (architectural refactoring)

Support for refactoring is one of the strengths of Model-Driven Software
Development. Refactoring can be applied to models, platforms, transformation rules
and the implemented code. Thus the Model-Driven Software Development facilitates
the reaction to changes clearly.

Proceedings of SEIN 2010

48

Changes in business requirements can be adopted through the generation process
very quickly and in a consistent way. For example: additional attributes in business
classes can automatically be reflected in the user interface, in the database definition,
and in all relevant data structures. Only the adaptation of the affected business logic
has to be done via source code refactoring. This is the most common type of
refactoring and is needed whenever new requirements affect existing code.

But another kind of changed requirements is significantly more complex to manage.
These are changed technical requirements like adjustments of the architecture or the
replacement of an underlying technical framework. In the model-driven approach,
architectural changes can be performed at a central point: at the templates and the
transformation rules. These changes are taking over for the whole application
automatically.

3.3. Supporting agile and distributed projects

In the context of distributed development, it is difficult to decide what should be
developed at what location. This is also in an agile project. Additionally there is the
question of how to achieve a common understanding of the future application.

Section 3.1. describes the need of developing additional artefacts in the context of
Model-Driven Software Development. But the creation of the domain architecture
can be separated well from the development of the business logic and can be
developed by a team located at a remote location without direct customer contact. At
the same time the development of the reference implementation, the description of
the reference design and associated programming model contributes to the general
understanding of the application architecture.

(Ambler, 2004) argues that the quality of the requirements descriptions is enhanced
with a domain specific modelling language. This applies to all teams in a distributed
project environment that operate close to the customer. However, the additional
abstraction by the domain specific modelling language is well suited to help all
project members to get the required overall picture of the application.

(Eckstein, 2004) describes how agile approaches can be applied in large projects. On
this basis, she describes in (Eckstein, 2010) the use of agile methods for distributed
teams. According to the author, just the emphasis on communication in agile
approaches is the essential advantage for working in large and distributed teams. The
challenge for such projects is to achieve a common vision of the target system and
mutual trust. While the usage of a domain specific modelling language supports the
communication, the reference design and reference implementation provides
transparency. This enables the team to reach this goal.

In this way, the Model-Driven Software Development can improve the limited
support of agile methods for distributed development projects.

University of Plymouth, UK, 24-28 November, 2010

49

4. Conclusions and further research

According to (Parsons et al. 2007), almost 40% of the surveyed IT professionals use
one or more agile methods in software development. Close cooperation with the
customer and refactoring are commonly referred to as the agile techniques with the
greatest benefit in terms of quality, productivity and satisfaction.

The close cooperation with the customer may be supported additionally through the
Model-Driven Software Development and the use of domain-specific languages. The
use of a common modelling language supports obtaining a shared vision of the
software that has to be developed.

The agile technique of refactoring assists the continuous improvement and
development towards the target architecture. The Model-Driven Software
Development supports this effect and brings additional efficiency into the
development. The code generation is also a guarantor for a unified and reproducible
implementation and high quality. The Model-Driven Software Development can help
to scale the agile techniques through the explicit separation of the development of the
domain architecture and the application development.

The further research will be focused on the following aspects. First, the issue is
examined what kind of modelling is suitable to enhance the communication with the
users, without creating unnecessary formalism. For this, approaches for agile model-
driven development are considered, as described in (Ambler, 2004). Additional
information provides a case study of the Rey Juan Carlos University in Madrid,
which took account of these approaches in their framework MIDAS (Cáceres et al.
2004). An agile process should be defined, that optimally integrates the modelling
and provides the information sufficient for the model-driven development.

Another aspect attends to the process of the model-driven development and the
relevant artefacts (e.g. the domain architecture). The goal is to define an agile
process for the development of these artefacts. For this, best practice experiences in
model-driven development like in (Baker et al. 2005) will be analyzed. In addition, a
survey about the usage of MDSD as well as the adaptation of agile process models in
practice will be done to get additional information about industrial experiences. For
this primarily the German IT-market will be examined, which has suffered recently
from particularly high and rising costs.

It is the intention to define and develop a framework to facilitate agile and model-
driven software engineering. This includes essential procedures, methods and tools.
The framework can be applied to the development, testing, operation or project
management. It is envisaged that the main focus will be the adoption of the
framework to combine agile and model-driven development and to derive a new
software development process. The framework will be applied to a software
development project to evaluate its usability and effectiveness.

Proceedings of SEIN 2010

50

5. References

Agile Alliance (2001a), „Manifesto for Agile Software Development“, www.agilealliance.org
(Accessed 15 July 2010)

Agile Alliance (2001b), „Principles behind the Agile Manifesto“,
www.agilealliance.org/principles.html (Accessed 15 July 2010)

Ambler, S. (2002), Agile Modeling. Effective Practices for eXtreme Programming and the
Unified Process, New York: John Wiley & Sons, ISBN: 0-471-20282-7.

Ambler, S. (2004), The Object Primer, 3rd Edition. Agile Model-Driven Development with
UML 2.0, New York: Cambridge University Press, ISBN: 978-0-521-54018-6.

Baker, P., Loh, S. & Weil, F. (2005), „Model-Driven Engineering in a Large Industrial
Context - Motorola Case Study“, in: Lecture Notes in Computer-Science. Model Driven
Engineering Languages and Systems., 3713, pp. 476-491.

Baskerville, R. & Pries-Heje, J. (2004) „Short cycle time systems development“, in:
Information Systems Journal, 14 (3), pp. 237-264.

Basili, V.R. and Rombach, H.D. (1991), ”Support for comprehensive reuse“, in: Software
Engineering Journal. 6 (5), pp. 303-316.

Cáceres, P., Díaz, F. & Marcos, E. (2004) „Integrating an Agile Process in a Model Driven
Architecture“, in GI Jahrestagung 2004. pp. 265-270.

Coad, P., Lefebvre, E. and DeLuca, E. (1999), Java Modeling in Color with UML. Enterprise
Components and Process, Upper Saddle River: Prentice Hall International, ISBN: 978-0-130-
11510-2.

Cohn, M. (2009), Succeeding with Agile: Software Development using Scrum, Amsterdam:
Addison-Wesley Longman, ISBN: 978-0-321-57936-2.

Eckstein, J. (2004), Agile Software Development in the Large - Diving Into the Deep. New
York: Dorset House, ISBN 978-0-932-63357-6.

Eckstein, J. (2010), Agile Software Development with Distributed Teams: Staying Agile in a
Global World, New York: Dorset House, ISBN: 978-0-932-63371-2.

Fowler, M. (1999), Refactoring: Improving the Design of Existing Code. Amsterdam:
Addison-Wesley Longman, ISBN: 978-0-201-48567-7

Hummel, O. and Atkinson, C. (2007), ”Supporting Agile Reuse Through Extreme
Harvesting“, in: Agile Processes in Software Engineering and Extreme Programming, 8th
International Conference. Como, Italy pp. 28-37.

Jones, C. (2008) Applied Software Measurement: Global Analysis of Productivity and Quality
3rd ed., New York: Mcgraw-Hill Professional, ISBN: 978-0-071-50244-3

Lindval, M., Muthig, D., Dagnino, A., Wallin, C., Kiefer, D., May, J. & Kähkönen, T. (2004)
„Agile Software Development in Large Organizations“, in: Computer, 37 (12), pp. 26-34.

University of Plymouth, UK, 24-28 November, 2010

51

Parsons, D., Ryu, H.R. & Lal, R. (2007), “The Impact of Methods and Techniques on
Outcomes from Agile Software Development Projects“. In Organisational Dynamics of
Technology-Based Innovation: Diversifying the Research Agenda. pp. 235-249.

Ramesh, B., Cao, L., Mohan, K. and Xu, P. (2006), “Can distributed software development be
agile?”, Communications of the ACM, 49 (10), pp. 41-46.

Stahl, T. & Völter, M. (2005), Model-Driven Software Development. Technology,
Engineering, Management, Chichester: John Wiley & Sons, ISBN: 0-470-02570-0.

Turk, D., France, R. & Rumpe, B. (2002), “Limitations of Agile Software Processes”, in:
Third International Conference on eXtreme Programming and Agile Processes in Software
Engineering. Alghero, Italy, pp. 43-46.

Turk, D., France, R., Rumpe, B. (2005), ”Assumptions Underlying Agile Software
Development Processes“, Journal of Database Management. 16 (4), pp. 62-87.

