
UTILITY COMPUTING SIMULATION

Benjamin Heckmann
Ingo Stengel

Günter Turetschek
University of Applied Sciences Darmstadt

Haardtring 100
D-64295 Darmstadt, Germany

E-mail: benjamin.heckmann@gmx.de

Andy Phippen
University of Plymouth

Room 405a, Cookworthy Building, Drake Circus
Plymouth, Devon, PL4 8AA, UK

KEYWORDS

SaaS, Cloud Computing, SOA, Service Billing, Service
Provision, QoS

ABSTRACT

Utility Computing (UC) misses an explicit definition of the
core relation between IT resource utilisation, its total costs
and service prices. Additionally, the implications of
complex usage scenarios occurring in UC have not been
examined for the service operations lifecycle. Missing
those, UC service offers fail in: prediction of resource
utilisation and dependent operational costs prediction,
calculation of subsequent price scales, and subsequent
runtime gross price calculations.

In this paper a strategy to handle UC’s complexity
proposing a simulation model to support each step in the
service operations lifecycle is presented. The
implementation approach for the model is based on
OMNeT++. First simulation outcomes are presented.

INTRODUCTION

This paper starts with a short definition of the term Utility
Computing as a business model. Afterwards a common
Service Operations Lifecycle is defined that has been
derived from ITIL. After setting the context, the research
objectives and the related research approach are introduced.
Subsequent the evolved strategy that is able to handle UC’s
complexity is outlined. This strategy includes the demand
for an UC provisioning model and a corresponding
simulation model. Both models and the implementation of
the simulation of the UC provisioning model are
introduced. First outcomes of simulation runs are shown.
Corresponding conclusions and further works are discussed.

UTILITY COMPUTING

This work is focused on the modelling and simulation of
service usage in the context of Utility Computing (UC).
The term utility thereby refers to the field of industry. Here
a public utility (Encyclopaedia Britannica, 2008) describes
an enterprise that provides certain classes of services to a
wide range of consumers.

The name Utility Computing indicates the vision of IT-
based services comparable to public utilities. In this work
Utility Computing is defined as a business model (Weill,

2001) for service providers offering IT-based services and
charging service consumers per usage, according to (Rappa,
2004). From the provider’s IT perspective UC is about
service provision that is able to scale dynamically,
according to real-time fluctuations in demand (Bunker et
al., 2006). Additionally, UC service provision offers its
services equipped with the ability to charge service
consumption per use (Neel, 2002).

From a consumer’s perspective UC is related to “the
reduction of IT-related operational costs and complexity”
(Yeo et al., 2006). Both perspectives, provision and
consumption, have in common to target a better utilisation
of generally underutilised IT resources (Andrzejak et al.,
2002) on both sides. In summary, UC implicitly claims an
abstract description how IT resource utilisation, its total
costs and service prices relate (see Figure 1).

Figure 1: UC’s resource – cost – price relation

Thereby Utility Computing does not refer to a specific IT
service definition. From a business perspective any service
that economically makes sense to be charged by its usage is
addressed by UC. Therefore a more abstract service
definition will be the most suitable for UC: A service
represents a type of relationship-based interaction between
a service provider and a service consumer to achieve a
certain solution objective. (Zhang et al., 2007) This
definition considers the definitions of (Fitzsimmons et al.,
2006) from the economics perspective and (Gronroos,
2000) from the marketing perspective. From a technical
perspective there are several types of services that fit into
this definition, e.g. SOAP web services, HTTP web servers
or Xen virtual infrastructures.

SERVICE OPERATIONS LIFECYCLE

In the context of Utility Computing service provision a
lightweight definition of a service lifecycle is necessary to
obtain an overview of lifecycle stakeholders and basic
activities relevant for service provision. As a basis for the
definition of a lifecycle in this work, the basic lifecycle

described in (Zhang et al., 2007) and the aggregation of the
ITIL v3 service lifecycle described in (Beard, 2008) are
used. Both descriptions can be aggregated to the three main
lifecycle phases: Service business planning, service
development and service operations.

The lifecycle phase of service business planning is
addressing service strategy and service engagement to
implement a business model. In classical IT business
models, not based on the vision of UC, IT resource
utilisation, its total costs and service prices only relate
indirectly (see economical model in Figure 2).

During service development the service lifecycle is
responsible for the design and implementation of services.
This phase also includes the transition process from an
implemented service to a deployed, ready for operations
service. The phase service operations focuses on the
provision of services. This addresses effectiveness and
efficiency in delivery and support of services.

RESEARCH OBJECTIVES

The overall context of this work focuses on specific aspects
of the service operations lifecycle (SOL) for service offers
based on the business model of Utility Computing. In the
phase of service business planning this work refers to the
corresponding service properties and service usage profiles
resulting from the previous UC definition. During service
development and the phase of service operations this work
will focus on services in the technical context of Service-
oriented Computing (SOC) (Papazoglou, 2003) consistent
to the paradigm of Cloud Computing as described by (Boss
et al., 2007).

In this context a description of the modifications necessary
to transfer a standard service operations lifecycle into a UC
SOL is missing. This includes the demand for an explicit
definition of UC’s core relation between IT resource
utilisation, its total costs and service prices. Also specific
attention must be given to the implications of complex UC
usage scenarios.

The unidentified implications of complex UC usage
scenarios, considerably compromise the planning,
development and operation of UC service offers. Under
these conditions the prediction of resource utilisation and
dependent operational costs prediction, calculation of
subsequent price scales, and subsequent runtime gross price
calculations will fail.

RESEARCH APPROACH

The overall work starts from the business perspective, as
technical requirements depend on the business requirements
imposed. Therefore, a five step approach to find solutions
for the specified objectives is proposed:

(1) Describe the current state of service usage in the
context of Utility Computing.

(2) Elaborate a detailed definition for the relation
between a service and its consumer.

(3) Analyse the SOL of UC services.

(4) Determine the implications of complex UC usage
scenarios regarding SOL.

(5) Deduct a corresponding strategy to handle the
complexity.

This paper focuses on the simulation of the UC model
developed as part of the overall work. The simulation, as
well as the UC model, is part of the developed strategy to
handle the complexity of UC usage scenarios.

STRATEGY TO HANDLE UC’S
COMPLEXITY

The overall work analyses the SOL to identify where
modifications allow an optimised support for UC scenarios.
Beginning with the phase of service business planning, the
classical relation between resource utilisation, costs and
prices is examined. Advanced relations for service
provision in UC were elaborated as show in Figure 2. The
relation marked with [A] adds a runtime relation between

Figure 2: UC relations in the business planning

the current usage and the gross price calculation that is
essential to offer pay-per-use in UC scenarios. Beside this,
service providers have to deal with complex usage
scenarios, added by relation [B]. To enable the direct
relation [A], constraints for UC service provision are
necessary. These constraints must describe the requirements
to enable this relation during service development and
operation.

In the service development phase of the service lifecycle,
new data including Usage Patterns specific for on-demand
IT infrastructures need to be integrated into the
development process (Mendoza, 2007) to improve service
quality (Heckmann, 2009). To support the planning of
framework architectures or the selection of framework
implementations, the definition of relevant UC service
provision constraints is necessary.

In the service operations phase, there are no adequate tools
to evaluate service interdependencies between all hosted
services. Also the Service Level Agreement (SLA)
interactions between all hosted services cannot be
estimated. Nor the resource planning for services to ensure
contracted service levels, respecting resource consumption
of other services hosted on shared resources, cannot be
analysed without adequate tools for complex UC scenarios.

As a result, of the analyses of the service operations
lifecycle, four major strategies for the reduction of the
complexity of UC service provision can be identified:

• Define UC constraints for service architectures

• Enable the analysis of service interdependencies
on development and operations level

• Permit the analysis of SLA interactions and
resource prediction

• Support the proof of price scales

To implement these modifications the development of a
technology-agnostic UC service provision model and a

corresponding technology-abstracted UC simulation
environment is proposed. See Figure 3 for a detailed
overview of all previously addressed relations.

UC MODEL

As the previous strategy suggests, the overall work defined
a technology-agnostic UC model (Heckmann, 2007). In
summary the model consists of eleven abstract elements,
logically grouping demanded functionalities, and three
basic workflows, which describe the minimum demanded
interaction of those elements.

The abstract elements are consumer groups requesting
services with a certain member count, request frequency
and characteristics, a broker to forward requests according
to costs aspects, a load-balancer to forward respecting load
aspects of a request, a host offering resources such as
computing cycles, memory, storage and network, and
service instances consuming offered resources.
Additionally some elements to organise service provision: a
registry, monitoring, and a service type element. In a
derived technical IT architecture these functional groups
can be represented as standalone components, but could
also be combined in joint architectural elements. As basic
workflows a simple service consumption workflow, a
complex service consumption workflow, and a cascaded
service consumption workflow where defined.

Other models in this context have been proposed by
(Mendoza, 2007), (Zhang et al., 2007) or (Bunker et al.,
2006). The model of Bunker and Thomson is the most
inadequate of them, since it provides too few details to be
helpful for IT architects to design a suitable UC architecture
for a specific service provision scenario. The model
delivers only a quick overall IT strategy to the provision of
UC-based services. The UC model by Zhang, Zhang and
Cai was developed from a business management
perspective. It specifically aims to the provision of SOAP-
based web services and describes in detail how those should
be provided. While the model of Mendoza uses a very
efficient model building approach, starting from a

Figure 3: UC relations in service development and operations

technological perspective. Both of the afore mentioned
models are very complex and technology-dependent.
Therefore a custom model building was conducted,
targeting a lightweight technology-agnostic solution.

SIMULATION MODEL

The simulation model represents a multi-tier architecture
(see Figure 4) for the UC-conform provision of services in
service-oriented computing. The functionalities described
in the UC model have been transformed into the simulation
model that implements this architecture. The current
implementation is capable to simulate:

• Complex user behaviour (user group): Messages
can be sent with random or fixed timeslots to
control the amount of messages arriving at the
broker. The resource consumption for transport
and processing of the embedded service request
can be determined separately. It is also possible to
configure transport priorities. Each service request
can include a free number of subrequests to
represent service cascades.

• Resource measurement and monitoring for
computing cycles, memory and disk space: The
hardware resources simulated and monitored are
computing cycles, memory and disk space.
Network traffic (bandwidth and delay) is currently
not monitored, but simulated. Additionally
monitored are the load-balancer and broker queues
and their message transport resource consumption.
The overall resource consumption for the storage
network is also traced.

• Message billing to service consumers (broker): To
each request response a bill based on the
processing sites computing cycles, memory and

storage costs will be attached. The consumption of
these resources during processing of the request is
billed, and it is possible to add additional per site
and per consumer margins.

• Message routing by site costs (broker): Messages
get routed to a site with enough resources to
process the request and the least costs for
processing.

• Message routing by resource demand (load-
balancer): Messages are routed by a site’s load-
balancer to a host with enough resources.

• Message queuing (broker & load-balancer):
Messages are temporarily stored within the service
broker or service load-balancer when not enough
resources for their processing are available. They
are recalled from queue after a certain scheduling
time and entered again in the scheduling sequence
of either the service broker or the service load-
balancer. In doing so the queuing consumes
resources in the system, and if the system balancer
runs out of resources, incoming messages are
dropped.

The simulation model is implemented based on the discrete
event simulation environment OMNeT++ (Varga, 2001).
For each simulation run it is possible to determine the
number of user groups requesting services. It is possible to
vary the total number of group members, the behaviour
timing as well as the type of request in meanings of service
type and request complexity individually per user group. It
is possible to specify any service type and any number of
service providers. Each provider may have several sites
with any number of hosts. Each host can be individually
equipped with computing power, memory and storage.
Additionally each site has access to a storage network to

Figure 4: Simulation model as multi-tier architecture

estimate storage network loads. For each user group and
service provider the price relation to each service type can
be individually adapted. This highly flexible configuration
targets the necessity to represent complex UC scenarios.

FIRST OUTCOMES

The largest test scenario currently simulated represents a
virtual travel booking processor with 2770 consumers in
five groups, each sending a single request of the same
service type including two subrequests to external service
providers. Thereby each request’s initialisation is randomly
scheduled within a given timeframe. As outcome of each
simulation run a data pool consisting of all values stated in
the resource measurement and monitoring definition of the
simulation model is provided. As examples for graphs
based on parts of the outcomes, in Figure 4 the
consumption of computing cycles characterised as the CPU
utilisation is shown for the TravelX broker, a load-balancer
and a host. The host’s graph also shows the memory
(MEM) and disk space (HDD) utilisation on the
contemplated host.

Additionally to simulation runs testing a large amount of
concurrent users, the implementation showed that it is able
to simulate the behaviour of highly meshed service
cascades. Even if it comes to special cases like looping
service requests, where subrequest providers themselves
use services provided by the original subrequest initiator.

Or in case of internal subrequests occurring, where the
provision of a service involves requests to other internally
provided services.

CONCLUSIONS AND FURTHER WORK

This paper identifies the modifications necessary to transfer
the standard SOL into a UC SOL. As part of the presented
strategy to handle UC’s complexity a simulation model is
introduced. First tests of this simulation model have shown
that it is possible to represent complex scenarios. The
prediction of resource utilisation, dependent operational
costs and subsequent runtime gross prices has been shown
in virtual scenarios. Further the simulation model mustbe
validated analysing real world scenarios. The main aspect
for adequate representation of the service’s behaviour will
be the calibration of the simulation runs to reflect the
current resource consumption of service requests. Here
further research has to be conducted.

Also part of future research must be the documentation of
theoretical aspects of the simulation model building. This
includes the relation between discrete event simulation and
queuing concepts from queuing theory, the revision of
relevant probability topics and the relevant background in
stochastic processes.

It is assumed that the technology-abstracted simulation
model can also be used for the simulation of RESTful or
simple services, such as web servers. Here further research
will be conducted.

BIOGRAPHIES

Benjamin Heckmann is a researcher at the aiDa research
center in Dieburg and PhD student at the University of
Plymouth, UK. He holds a M.Sc. in computer science. His
research interests are in the areas of Utility Computing,
Cloud Computing, Unified Communications and IT-
Security.

Ingo Stengel graduated at the Cork Institute of Technology,
Ireland. He is co-founder and Executive Director of the
igdv-Centre for Advanced Learning, Media and Simulation
at the University of Applied Sciences Darmstadt. His
research interests are in the area of Multiagent-Systems,
Simulation Software, IT-Security and Advanced Learning.

Andy Phippen received his PhD in the year 2001. He is
Senior Lecturer in Business Enterprise and Ethics at the
University of Plymouth. His research focuses on the impact
of software development and learning & teaching in higher
education. Further, he is the director of the IT liaison at the
University of Plymouth.

Günter Turetschek is Professor for computer science at the
University of Applied Sciences Darmstadt; co-founder and
director of the Institute for Applied Informatics Darmstadt
(aiDa). His research interests are in the area of Business
Computing, Unified Communications and Utility
Computing.

REFERENCES

Andrzejak, A., J. Rolia and M. Arlitt. 2002. “Bounding Resource
Savings of Utility Computing Models”. HP Labs Technical
Report HPL-2002-339.

Beard, H. 2008. Cloud Computing Best Practices for Managing
and Measuring Processes for On-Demand Computing,
Applications and Data Centers in the Cloud with Slas. Emereo
Pty Ltd.

Boss, G., P. Malladi, D. Quan, L. Legregni and H. Hall. 2007.
“Cloud computing”. IBM, developerWorks, WebSphere, High
Performance On Demand Solutions.

Bunker, G.; and D. Thompson. 2006. Delivering Utility
Computing: Business-driven IT Optimization. John Wiley &
Sons.

Encyclopaedia Britannica, 2008. public utility. In Encyclopaedia
Britannica Online, retrieved December, 2008.

Fitzsimmons, J.A.; and M.J. Fitzsimmons. 2006. Service
Management: Operations, Strategy, and Information
Technology. 5th Ed., Irwin/McGraw-Hill, Homewood, IL.

Gronroos, C. 2000. Service Management and Marketing: A
Customer Relationship Management Approach. John Wiley &
Sons.

Heckmann, B. 2007. “Service provision in a utility computing
environment”. SEIN 2007, University of Plymouth, 14-15
June 2007.

Heckmann, B. 2009. “Technology-agnostic definition of the
Utility Computing service operations lifecycle”. Transfer
Report, University of Plymouth, April 2009.

Mendoza, A., 2007. Utility Computing Technologies, Standards,
and Strategies. Artech House Inc.

Neel, D. 2002. “The Utility Computing Promise”. InfoWorld,
April 12, 2002.

Papazoglou, M.P. 2003. “Service-oriented computing: concepts,
characteristics and directions”. Web Information Systems

Engineering, 2003. WISE 2003. Proceedings of the Fourth
International Conference on 10-12 Dec. 2003 Page(s):3 – 12.

Rappa, M.A. 2004. “The utility business model and the future of
computing services”. IBM Syst. J. 43, 1 (Jan. 2004), 32-42.

Yeo, C.S., M.D. Assunção, J. Yu, A. Sulistio, S. Venugopal, M.
Placek and R. Buyya. 2006. “Utility Computing on Global
Grids”. Hossein Bidgoli (ed), The Handbook of Computer
Networks, John Wiley & Sons, New York, USA, accepted in
April 2006 and in print.

Varga, A. 1997. “Flexible topology description language for
simulation programs”. Simulation in industry: 9th European
Simulation Symposium 1997:225-229.

Varga, A. 2001. “The OMNeT++ Discrete Event Simulation
System”. In the Proceedings of the European Simulation
Multiconference (ESM'2001). June 6-9, 2001. Prague, Czech
Republic.

Weill, P. and M.R. Vitale. 2001. “Place to space: Migrating to
eBusiness Models”. Boston, Harvard Business School Press.

Zhang, L.-J.; J. Zhang; and H. Cai. 2007. Services Computing,
Core Enabling Technology of the Modern Services Industry.
published by Springer and Tsinghua University Press.

