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ABSTRACT 

Utility Computing (UC) misses an explicit definition of the 
core relation between IT resource utilisation, its total costs 
and service prices. Additionally, the implications of 
complex usage scenarios occurring in UC have not been 
examined for the service operations lifecycle. Missing 
those, UC service offers fail in: prediction of resource 
utilisation and dependent operational costs prediction, 
calculation of subsequent price scales, and subsequent 
runtime gross price calculations. 

In this paper a strategy to handle UC’s complexity 
proposing a simulation model to support each step in the 
service operations lifecycle is presented. The 
implementation approach for the model is based on 
OMNeT++. First simulation outcomes are presented. 

INTRODUCTION 

This paper starts with a short definition of the term Utility 
Computing as a business model. Afterwards a common 
Service Operations Lifecycle is defined that has been 
derived from ITIL. After setting the context, the research 
objectives and the related research approach are introduced. 
Subsequent the evolved strategy that is able to handle UC’s 
complexity is outlined. This strategy includes the demand 
for an UC provisioning model and a corresponding 
simulation model. Both models and the implementation of 
the simulation of the UC provisioning model are 
introduced. First outcomes of simulation runs are shown. 
Corresponding conclusions and further works are discussed. 

UTILITY COMPUTING 

This work is focused on the modelling and simulation of 
service usage in the context of Utility Computing (UC). 
The term utility thereby refers to the field of industry. Here 
a public utility (Encyclopaedia Britannica, 2008) describes 
an enterprise that provides certain classes of services to a 
wide range of consumers. 

The name Utility Computing indicates the vision of IT-
based services comparable to public utilities. In this work 
Utility Computing is defined as a business model (Weill, 

2001) for service providers offering IT-based services and 
charging service consumers per usage, according to (Rappa, 
2004). From the provider’s IT perspective UC is about 
service provision that is able to scale dynamically, 
according to real-time fluctuations in demand (Bunker et 
al., 2006). Additionally, UC service provision offers its 
services equipped with the ability to charge service 
consumption per use (Neel, 2002). 

From a consumer’s perspective UC is related to “the 
reduction of IT-related operational costs and complexity” 
(Yeo et al., 2006). Both perspectives, provision and 
consumption, have in common to target a better utilisation 
of generally underutilised IT resources (Andrzejak et al., 
2002) on both sides. In summary, UC implicitly claims an 
abstract description how IT resource utilisation, its total 
costs and service prices relate (see Figure 1). 

 

Figure 1: UC’s resource – cost – price relation 

Thereby Utility Computing does not refer to a specific IT 
service definition. From a business perspective any service 
that economically makes sense to be charged by its usage is 
addressed by UC. Therefore a more abstract service 
definition will be the most suitable for UC: A service 
represents a type of relationship-based interaction between 
a service provider and a service consumer to achieve a 
certain solution objective. (Zhang et al., 2007) This 
definition considers the definitions of (Fitzsimmons et al., 
2006) from the economics perspective and (Gronroos, 
2000) from the marketing perspective. From a technical 
perspective there are several types of services that fit into 
this definition, e.g. SOAP web services, HTTP web servers 
or Xen virtual infrastructures. 

SERVICE OPERATIONS LIFECYCLE 

In the context of Utility Computing service provision a 
lightweight definition of a service lifecycle is necessary to 
obtain an overview of lifecycle stakeholders and basic 
activities relevant for service provision. As a basis for the 
definition of a lifecycle in this work, the basic lifecycle 



described in (Zhang et al., 2007) and the aggregation of the 
ITIL v3 service lifecycle described in (Beard, 2008) are 
used. Both descriptions can be aggregated to the three main 
lifecycle phases: Service business planning, service 
development and service operations. 

The lifecycle phase of service business planning is 
addressing service strategy and service engagement to 
implement a business model. In classical IT business 
models, not based on the vision of UC, IT resource 
utilisation, its total costs and service prices only relate 
indirectly (see economical model in Figure 2). 

During service development the service lifecycle is 
responsible for the design and implementation of services. 
This phase also includes the transition process from an 
implemented service to a deployed, ready for operations 
service. The phase service operations focuses on the 
provision of services. This addresses effectiveness and 
efficiency in delivery and support of services. 

RESEARCH OBJECTIVES 

The overall context of this work focuses on specific aspects 
of the service operations lifecycle (SOL) for service offers 
based on the business model of Utility Computing. In the 
phase of service business planning this work refers to the 
corresponding service properties and service usage profiles 
resulting from the previous UC definition. During service 
development and the phase of service operations this work 
will focus on services in the technical context of Service-
oriented Computing (SOC) (Papazoglou, 2003) consistent 
to the paradigm of Cloud Computing as described by (Boss 
et al., 2007). 

In this context a description of the modifications necessary 
to transfer a standard service operations lifecycle into a UC 
SOL is missing. This includes the demand for an explicit 
definition of UC’s core relation between IT resource 
utilisation, its total costs and service prices. Also specific 
attention must be given to the implications of complex UC 
usage scenarios. 

The unidentified implications of complex UC usage 
scenarios, considerably compromise the planning, 
development and operation of UC service offers. Under 
these conditions the prediction of resource utilisation and 
dependent operational costs prediction, calculation of 
subsequent price scales, and subsequent runtime gross price 
calculations will fail. 

RESEARCH APPROACH 

The overall work starts from the business perspective, as 
technical requirements depend on the business requirements 
imposed. Therefore, a five step approach to find solutions 
for the specified objectives is proposed: 

(1) Describe the current state of service usage in the 
context of Utility Computing. 

(2) Elaborate a detailed definition for the relation 
between a service and its consumer. 

(3) Analyse the SOL of UC services. 

(4) Determine the implications of complex UC usage 
scenarios regarding SOL. 

(5) Deduct a corresponding strategy to handle the 
complexity. 

This paper focuses on the simulation of the UC model 
developed as part of the overall work. The simulation, as 
well as the UC model, is part of the developed strategy to 
handle the complexity of UC usage scenarios. 

STRATEGY TO HANDLE UC’S 
COMPLEXITY 

The overall work analyses the SOL to identify where 
modifications allow an optimised support for UC scenarios. 
Beginning with the phase of service business planning, the 
classical relation between resource utilisation, costs and 
prices is examined. Advanced relations for service 
provision in UC were elaborated as show in Figure 2. The 
relation marked with [A] adds a runtime relation between 

Figure 2: UC relations in the business planning



the current usage and the gross price calculation that is 
essential to offer pay-per-use in UC scenarios. Beside this, 
service providers have to deal with complex usage 
scenarios, added by relation [B]. To enable the direct 
relation [A], constraints for UC service provision are 
necessary. These constraints must describe the requirements 
to enable this relation during service development and 
operation. 

In the service development phase of the service lifecycle, 
new data including Usage Patterns specific for on-demand 
IT infrastructures need to be integrated into the 
development process (Mendoza, 2007) to improve service 
quality (Heckmann, 2009). To support the planning of 
framework architectures or the selection of framework 
implementations, the definition of relevant UC service 
provision constraints is necessary. 

In the service operations phase, there are no adequate tools 
to evaluate service interdependencies between all hosted 
services. Also the Service Level Agreement (SLA) 
interactions between all hosted services cannot be 
estimated. Nor the resource planning for services to ensure 
contracted service levels, respecting resource consumption 
of other services hosted on shared resources, cannot be 
analysed without adequate tools for complex UC scenarios. 

As a result, of the analyses of the service operations 
lifecycle, four major strategies for the reduction of the 
complexity of UC service provision can be identified: 

• Define UC constraints for service architectures 

• Enable the analysis of service interdependencies 
on development and operations level 

• Permit the analysis of SLA interactions and 
resource prediction 

• Support the proof of price scales 

To implement these modifications the development of a 
technology-agnostic UC service provision model and a 

corresponding technology-abstracted UC simulation 
environment is proposed. See Figure 3 for a detailed 
overview of all previously addressed relations. 

UC MODEL 

As the previous strategy suggests, the overall work defined 
a technology-agnostic UC model (Heckmann, 2007). In 
summary the model consists of eleven abstract elements, 
logically grouping demanded functionalities, and three 
basic workflows, which describe the minimum demanded 
interaction of those elements. 

The abstract elements are consumer groups requesting 
services with a certain member count, request frequency 
and characteristics, a broker to forward requests according 
to costs aspects, a load-balancer to forward respecting load 
aspects of a request, a host offering resources such as 
computing cycles, memory, storage and network, and 
service instances consuming offered resources. 
Additionally some elements to organise service provision: a 
registry, monitoring, and a service type element. In a 
derived technical IT architecture these functional groups 
can be represented as standalone components, but could 
also be combined in joint architectural elements. As basic 
workflows a simple service consumption workflow, a 
complex service consumption workflow, and a cascaded 
service consumption workflow where defined. 

Other models in this context have been proposed by 
(Mendoza, 2007), (Zhang et al., 2007) or (Bunker et al., 
2006). The model of Bunker and Thomson is the most 
inadequate of them, since it provides too few details to be 
helpful for IT architects to design a suitable UC architecture 
for a specific service provision scenario. The model 
delivers only a quick overall IT strategy to the provision of 
UC-based services. The UC model by Zhang, Zhang and 
Cai was developed from a business management 
perspective. It specifically aims to the provision of SOAP-
based web services and describes in detail how those should 
be provided. While the model of Mendoza uses a very 
efficient model building approach, starting from a 

Figure 3: UC relations in service development and operations 



technological perspective. Both of the afore mentioned 
models are very complex and technology-dependent. 
Therefore a custom model building was conducted, 
targeting a lightweight technology-agnostic solution. 

SIMULATION MODEL 

The simulation model represents a multi-tier architecture 
(see Figure 4) for the UC-conform provision of services in 
service-oriented computing. The functionalities described 
in the UC model have been transformed into the simulation 
model that implements this architecture. The current 
implementation is capable to simulate: 

• Complex user behaviour (user group): Messages 
can be sent with random or fixed timeslots to 
control the amount of messages arriving at the 
broker.  The resource consumption for transport 
and processing of the embedded service request 
can be determined separately. It is also possible to 
configure transport priorities. Each service request 
can include a free number of subrequests to 
represent service cascades. 

• Resource measurement and monitoring for 
computing cycles, memory and disk space: The 
hardware resources simulated and monitored are 
computing cycles, memory and disk space. 
Network traffic (bandwidth and delay) is currently 
not monitored, but simulated. Additionally 
monitored are the load-balancer and broker queues 
and their message transport resource consumption. 
The overall resource consumption for the storage 
network is also traced. 

• Message billing to service consumers (broker): To 
each request response a bill based on the 
processing sites computing cycles, memory and 

storage costs will be attached. The consumption of 
these resources during processing of the request is 
billed, and it is possible to add additional per site 
and per consumer margins. 

• Message routing by site costs (broker): Messages 
get routed to a site with enough resources to 
process the request and the least costs for 
processing. 

• Message routing by resource demand (load-
balancer): Messages are routed by a site’s load-
balancer to a host with enough resources. 

• Message queuing (broker & load-balancer): 
Messages are temporarily stored within the service 
broker or service load-balancer when not enough 
resources for their processing are available. They 
are recalled from queue after a certain scheduling 
time and entered again in the scheduling sequence 
of either the service broker or the service load-
balancer. In doing so the queuing consumes 
resources in the system, and if the system balancer 
runs out of resources, incoming messages are 
dropped. 

The simulation model is implemented based on the discrete 
event simulation environment OMNeT++ (Varga, 2001).  
For each simulation run it is possible to determine the 
number of user groups requesting services. It is possible to 
vary the total number of group members, the behaviour 
timing as well as the type of request in meanings of service 
type and request complexity individually per user group. It 
is possible to specify any service type and any number of 
service providers. Each provider may have several sites 
with any number of hosts. Each host can be individually 
equipped with computing power, memory and storage. 
Additionally each site has access to a storage network to 

Figure 4: Simulation model as multi-tier architecture 



estimate storage network loads. For each user group and 
service provider the price relation to each service type can 
be individually adapted. This highly flexible configuration 
targets the necessity to represent complex UC scenarios. 

FIRST OUTCOMES 

The largest test scenario currently simulated represents a 
virtual travel booking processor with 2770 consumers in 
five groups, each sending a single request of the same 
service type including two subrequests to external service 
providers. Thereby each request’s initialisation is randomly 
scheduled within a given timeframe. As outcome of each 
simulation run a data pool consisting of all values stated in 
the resource measurement and monitoring definition of the 
simulation model is provided. As examples for graphs 
based on parts of the outcomes, in Figure 4 the 
consumption of computing cycles characterised as the CPU 
utilisation is shown for the TravelX broker, a load-balancer 
and a host. The host’s graph also shows the memory 
(MEM) and disk space (HDD) utilisation on the 
contemplated host. 

Additionally to simulation runs testing a large amount of 
concurrent users, the implementation showed that it is able 
to simulate the behaviour of highly meshed service 
cascades. Even if it comes to special cases like looping 
service requests, where subrequest providers themselves 
use services provided by the original subrequest initiator. 

Or in case of internal subrequests occurring, where the 
provision of a service involves requests to other internally 
provided services. 

CONCLUSIONS AND FURTHER WORK 

This paper identifies the modifications necessary to transfer 
the standard SOL into a UC SOL. As part of the presented 
strategy to handle UC’s complexity a simulation model is 
introduced. First tests of this simulation model have shown 
that it is possible to represent complex scenarios. The 
prediction of resource utilisation, dependent operational 
costs and subsequent runtime gross prices has been shown 
in virtual scenarios. Further the simulation model mustbe 
validated analysing real world scenarios. The main aspect 
for adequate representation of the service’s behaviour will 
be the calibration of the simulation runs to reflect the 
current resource consumption of service requests. Here 
further research has to be conducted. 

Also part of future research must be the documentation of 
theoretical aspects of the simulation model building. This 
includes the relation between discrete event simulation and 
queuing concepts from queuing theory, the revision of 
relevant probability topics and the relevant background in 
stochastic processes. 

It is assumed that the technology-abstracted simulation 
model can also be used for the simulation of RESTful or 
simple services, such as web servers. Here further research 
will be conducted. 
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