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Key results: The relationship between permutation-optimal trellis and sectionalization-optimal trellis is found.

A new method to count the decoding complexity is provided. The sectionalization method is performed with

different decoding algorithms.

How does the work advance the state-of-the-art?: The complexity of trellis-based decoding can be reduced

by up to 50% with sectionalization.

Motivation (Problems addressed): To reduce the computational complexity and the size of memory storage

required.

Introduction

A trellis T is an edge-labeled directed graph with

the property that every state in T has a well-defined

depth which can represent corresponding codes in cod-

ing theory. Currently, trellis-based algorithms are widely

used, for example, Viterbi algorithm [7] and MAP algo-

rithm [4]. There are many different factors that impose

on the complexity of trellises, each decoding method has

different level of complexity. In this paper, we briefly sur-

vey the complexity of the Viterbi decoding algorithm with

Hamming codes and their dual.

A Review of Sectionalized Trellises

Consider an (n, k) linear block code C with a n-stage

bit-level trellis T in which each branch represents a single

code bit. The trellis can be sectionalized by any positive

integer ν ranging from 1 to n, so the section boundary set

is {h0, h1, . . . , hν}, where 0 = h0 < h1 < · · · < hν = n.

An n-depth trellis has 2n−1 sectionalizations, for exam-

ple, Hamming(7,4) has 26 different sectionalizations. The

main idea in sectionalizing an original trellis is to amalga-

mate sections that involves two steps: [2].

1. deleting the states and branches between the initial

section to the final section;

2. connecting states from the initial section to the final

section with the combined labels.

According to[1], we can compute the number of

branches |Bj | and the number of states |Sj | for any section

from the generator matrix of C.

Viterbi decoding based on the Sectionalized
Trellis

The Viterbi algorithm is a maximum likelihood decoding

method which chooses a codeword having the maximum

likelihood metric, or the minimum distance metric.

This decoding procedure consists of two major steps:

computing the branch metrics and finding the survivor

paths in the resulting trellis. The decoding implementa-

tion includes two metric: branch metric and state metric.

Vardy complexity algorithm [1] considers the complex-

ity of computing the branch metric and the complexity of

Viterbi decoding separately.

Branch metric complexity means computing the num-

ber of operations required in all the branches in one sec-

tion. Decoding complexity |D(T )| is the number of op-

erations required to decode the trellis T . We denote the

subcode of C as C(T ), and the dual subcode as C(T )⊥.

There are lots of pre-computations in every step, which

can not be easily ignored in the real implementation. In

the branch metrics, whether C(T ) is self-complementary

need justifying. For an N -length block code, there are

NCi =
∑N

i=1 i different C(T ) need to be judged. As-

sume in each section, there are m codewords. So every

C(Tj) need at most

J(Tj) = (m− 1) ·m +

m−2∑

i=1

i (1)

comparisons. If we pre-store the self-complementary ta-

ble with the rows meaning the beginning boundary and the

columns meaning the ending boundary, N × N matrix is

required. For example, Hamming (7, 4) need NCi = 27,

J(Ti) = 77 and the size of memory storage, MC(T ) is

7× 7.

Also in the branch metrics, we need to consider

whether 1 ∈ C(T )⊥ and the length of the section li = 0
mod 2 or not. The dual code of C(T ) can be obtained

from H matrix of C(T ). First, to find all the possibilites

of li = 0 mod 2, the number of the judgements is de-

noted by Y .

Y =

(int)N/2∑

j=0

(N − 1)− (2× j) (2)

And at each section, there are at most m judgements

required to determine whether 1 ∈ C(T )⊥ or not. The



pre-table requires N×N matrix. We still use Hamming(7,

4) as the example, which need m = 8, Y = 12, and

memory storage 7× 7.

In the decoding part, all the subcodes of C are required

to be considered. There are at most
∑N

i=1 i×m compar-

isons for each section. The results also can be pre-stored

in an N ×N matrix. The number of comparisons for the

Hamming(7, 4) code is 216.

From the analysis above, we can conclude that the

longer the code length, the more calculations and mem-

ory storage required, so the complexity of pre-determining

calculations can not be simply ignored. So we provide the

Straightforward algorithm, which trades complexity for

implementation simplicity. Recalling the Viterbi decoder,

suppose Shi,pj
in which hi means the current depth and pj

means the position in this depth, Dn represents the state

and On is the corresponding output. For example, the first

stage of branch metric computation for Hamming (7, 4)

trellis, we can get the equation as follows:

S
′

1,1 = S1,1 + (D1 −O1)
2 + (D2 −O2)

2 + (D3 −O3)
2

S
′

1,2 = S1,2 + (D′1 −O1)
2 + (D′2 −O2)

2 + (D′3 −O3)
2

(3)

S2,1 = min{S
′

1,1, S
′

1,2}. (4)

As described in [3, 5], we consider the number of addi-

tions and the number of comparisons as the complexity of

Viterbi decoding. Because of the linear property, the num-

ber of operations can be obtained section by section. For

each section, the number of addition is equal to the num-

ber of branches in this section and the number of compar-

isons is |B| − |Snext|. The Vardy’s algorithm is shown as

follows:

Dv(Th,h′) = 2× |B| − |S1|. (5)

Obviously, as the number of stages per section increases,

the number of labels per branch will increase. We also

need storage to save the labels. So we get the update met-

ric as follows

Dv(Th,h′) = 2× |B| − |S1|+ |B| × |σ| (6)

where σ is the number of labels per branch. Although the

complexity is higher than Vardy’s method, most criteria of

Vardy’s depend on lots of comparisons which are ignored

in this algorithm, comparisons cannot be simply ignored

in real implementation especially for long block codes.

Optimal sectionalization and Optimal
Permutation

Given a code, there are very many different trellises

that represent it, of widely varying complexity. When the

permutation-optimal trellis is chosen, the decoding com-

plexity can be minimized among all the representations. A

permutation that yields the smallest state space dimension

at every time of the code trellis and the smallest overall

branch complexity is called an optimum permutation [6].

For Hamming codes, the permutation-optimal trellises can

normally be obtained directly by natural lexicographic H

matrix. In this case, we use Golay (24,12,8) and count

the operations with the straightforward algorithm as the

example shown in table 1.

Bit-level trellis operations Optimum sectionalization

operations boundary

location

4472 2558 {0,8,12,14,

15,16,24}

89560 5630 {0,11,24}

120904 4478 {0,9,24}

Table 1: Comparison between permutation-optimal and

sectionalization-optimal on Golay (24,12,8)

Conclusion

In this paper, the Viterbi algorithm has been modified with

sectionalized trellises. Results of Hamming codes and

their dual codes show that the sectionalization method can

reduce the computing complexity and the memory stor-

age. With the sectionaliztion algorithm, the computation

complexity can be reduced by nearly 50%. Considering

the large number of pre-calculations and large momery

storage requirements by the previous metric, we inves-

tigated and provided the update metric: Straightforward

algorithm, which can search out the optimal sectionaliza-

tion of C more effieciently and quickly than Vardy’s al-

gorithm. And the relation between sectionalization and

permutation is found in the paper. It turns out that

the sectionalization-optimal code with the permutation-

optimal mode can drastically change the number of the

computational operations in decoding procedure, often by

an exponential factor.
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