
Section 4 – Computing, Computer Applications, Ecommerce & Interactive Intelligent Systems

223

Using WS-Addressing To Perform Asynchronous Web

Service Calls

J.Hayward and A.Phippen

Network Research Group, University of Plymouth, Plymouth, United Kingdom

e-mail: info@network-research-group.org

Abstract

The Simple Object Access Protocol (SOAP) specification does not define an asynchronous
message exchange pattern for web services. Business Process Execution Language (BPEL),
however, does provide a mechanism for using web services asynchronously, but it relies on

hard-coding the end points for the request and the response. This results in tight coupling
between the client and the service. WS-Addressing provides a mechanism for defining end
points and relating messages with each other. By using the Microsoft Web Service
Enhancements the project proposes a mechanism with which web service responses can be
routed to an available application using information defined with the WS-Addressing
specification. This mechanism loosens the coupling between the client and service and can
improve system reliability.

Keywords

Web Services, Asynchronous, WS-Addressing, BPEL

1. Introduction

With the introduction of Business Process Execution Language (BPEL) there has

been interest in composing web services into new web services. One example is that

of a travel company that uses booking services of airlines, hotels, and car rental

companies to provide a new service that enables a consumer to book a complete trip.

This new composite service could use BPEL to create a fully automated service

where the appropriate services are used and the results compared to provide the

consumer with the best option.

Processes that are controlled by computer systems provide a number of benefits.

They provide flexibility enabling quick responses to changes in required services.

New services can be created to meet new business requirements. Through auditing of

completed processes compliance can be assured and costs calculated and controlled.

However a majority of processes within companies require human involvement.

These human activities stop the automatic process and can take a variable amount of

time to complete. For example, in a document editing process an author may take

months to write a document. Once the author has finished his task the process needs

to continue.

Advances in Networks, Computing and Communications 3

224

This paper researches mechanisms by which web services can be invoked

asynchronously by using open standards and not relying on bespoke interfaces. The

WS-Addressing specification provides information that enable routing and

messaging information to be included in Simple Object Access Protocol (SOAP)

messages. The SOAP standard itself does not specify an asynchronous message

exchange pattern. However by including WS-Addressing information within the
SOAP message headers asynchronous messaging can be supported. By including the

WS-Addressing information in SOAP headers rather than in the published web

service interface synchronous web services can ignore the routing information. From

the information included in the response from a web service it can be determined if

the web service is synchronous or asynchronous.

2. Asynchronous Calls with BPEL

BPEL provides a mechanism for asynchronous calls. The <receive> element

following an <invoke> element provides an advertised entry point that the response

from the remote web service can use. Juric (2004) describes a typical asynchronous

callback as a “[call to a web service] providing a port type through which the web

service invokes the callback operation”. The port type used by the callback as

defined by the <receive> element is publicly declared within the BPEL process Web

Service Description Language (WSDL) document (Christensen et al, 2005). The

BPEL asynchronous callback mechanism is illustrated by Figure 1, shown below:

Figure 1: Example BPEL Asynchronous Call (Adapted from figure by Juric

(2004))

Juric (2004) explains that in the above diagram the client (A) and web service (B) are

BPEL processes. Because the client BPEL process (A) is itself advertised as a web

service then a “callback” port type must also be defined within the WSDL. The

BPEL process that is the invoked web-service (B) then performs an <invoke> to use
the callback to the client (A). This model assumes that all the web services a client

will be dealing with will themselves be a BPEL defined process as there is a “partner

link” between the two processes. Indeed Andrews et al (2003) describe within the

BPEL specification that partner links “represent dependencies between services”. In

the airline example supplied by Juric (2004) the callback is hard-coded into the third-

party web service (B). Weerawarana et al. (2005) give an example whereby the

client (A) supplies the partner-link to the web-service (B) which is then used to

perform the callback. This reduces the hard-coding, but still relies on the web service

(B) being a BPEL process and a tight-coupling exists whereby the web service (B)

interface requires a partner-link definition.

Section 4 – Computing, Computer Applications, Ecommerce & Interactive Intelligent Systems

225

The issue still remains of performing a callback from a web service which is either

not a BPEL process or contains a hard-coded callback. As with the Weerawarana et

al (2005) example, the interface of any web service needing to be invoked

asynchronously must define a parameter for receiving at least one location of a web

service where the response can be sent. This infers that the interface of the web

service must be compromised to include callback information. Any client using the
client must understand the format of the callback information and provide it along

with other parameters the service requires.

Consider a task management system that is used by a BPEL defined processes to

assign manual tasks to personnel. The BPEL definition will invoke the task

management system to create a new task for a particular person. When the person

completes the task within the task management system they acknowledge that the

task is complete. The task management system must then perform the callback to the

BPEL engine so that the process can continue. In order for the task management

system to interact with the BPEL engine in this asynchronous way callback

information must be supplied.

There are various categories of information that is required to be included within the

callback information. These are:

 Details of where to send the reply

 A unique identifier for the message

 Details of where faults should be sent

Zdun et al (2003) details a framework which uses an asynchronous web service call

proxy external which provides a simple API to client code. The approach of using a

proxy is similar to that provided by the Microsoft .NET framework, where it is the

proxy that waits for a response from the service and then performs the provided call
back to the client code (Microsoft, 2003). Zdun et al (2003) use the proxy to either

poll the service to determine if a result is available or it waits for the response from

the service and then performs the required callback to the client. With the proxy

approach there are a number of issues that arise when the length of time for the reply

from the service could be more than a few minutes, especially when human

interaction is involved. These issues include:

 Each poll of the server generates at least one network message and

response. With many instances running this could unnecessarily flood the

network and downgrade performance.

 It is unclear what occurs if the client crashes. Does the proxy continue, or
does it crash too? If the proxy stays up what happens to the callback go?

3. Defining Callbacks with WS-Addressing

The Web Service Addressing (WS-Addressing) specification provides a framework

for supplying information that would be required for a callback mechanism between
remote services. WS-Addressing provides transport-neutral mechanisms to address

Advances in Networks, Computing and Communications 3

226

Web services (Gidgin et al, 2005). This provides the means to identify a web service

endpoint and a way to use these in SOAP messages for the exchange of messages

between Web Service providers and requesters (Weerawarana et al, 2005).

WS-Addressing contains the headers ReplyTo and FaultTo which define locations

where response messages are to be sent (Weerawarana et al, 2005). Additionally a
MessageID provides a unique identifier for the message so that a message can be

related to a specific request by the sender. The Source header defines where the

request came from. When callback information is supplied to the service the WS-

Addressing headers can be supplied in the <header> element of the SOAP message.

Below is an example of a request SOAP message and the response that utilise the

WS-Addressing specification (Adapted from example by Weerawarana et al, 2005).

WS-Addressing Request Example

<S:Envelope xmlns:S=”http://www.w3.org/2003/05/soap-envelope”

xmlns:wsa=”http://schemas.xmlsoap.org/ws/2004/08/addressing”>

 <S:Header>

 <wsa:Source>

 <wsa:Address>http://source.com/sender</wsa:Address>

 </wsa:Source>

 <wsa:MessageID>guid:7hf8dhycd-f8djdi9-difcjdkfd

 </wsa:MessageID>

 <wsa:ReplyTo>

 <wsa:Address>http://reply-machine.com/replyreceiver

 </wsa:Address>

 </wsa:ReplyTo>

 </S:Header>

 <S:Body>

 <!--- BODY CONTENTS --->

 </S:Body>

</S:Envelope>

WS-Addressing Response Example

<S:Envelope xmlns:S=”http://www.w3.org/2003/05/soap-envelope”

xmlns:wsa=”http://schemas.xmlsoap.org/ws/2004/08/addressing”>

 <S:Header>

 <wsa:RelatesTo>guid:7hf8dhycd-f8djdi9-difcjdkfd

 </wsa:RelatesTo>

 </S:Header>

 <S:Body>

 <!--- RESPONSE CONTENTS --->

 </S:Body>

</S:Envelope>

Section 4 – Computing, Computer Applications, Ecommerce & Interactive Intelligent Systems

227

The WS-Addressing specification states that the RelatesTo header contains the ID

passed to the service with the MessageID header in the request (Weerwarana, 2005).

It is header that enables the application receiving the response to match the response

to the process that generated the original request. By using WS-Addressing in the

SOAP headers the response can be routed to an appropriate location. However, the

SOAP specification (Box et al, 2000) does not contain an inherent asynchronous
messaging exchange pattern. The web service still needs to be written to specifically

read the WS-Addressing headers in order to provide asynchronous calling.

As described earlier, the sender of the request may not be available to receive the

asynchronous result. This is especially true where the asynchronous call is to allow

human interaction which could take months to complete. Therefore the callback

address supplied in the WS-Addressing ReplyTo header may be an un-reliable one.

One solution is for the ReplyTo address to point to a host that acts as a mediator or

broker. The broker will receive the response and forward it onto either the source of

the request or, if it is unavailable, any available host. The source of the request is

supplied to Web Service as the Source header and so needs to be included in the

SOAP message sent to the broker. Figure 2 illustrates this sequence of events:

Figure 2: Using a broker to route asynchronous call responses.

In this architecture the Broker needs to contain a level of intelligence. It must interact

with a directory, such as a Universal Description Discovery and Integration (UDDI)

server where hosts capable of processing the response are advertised, and select an

applicable host.

4. Testing Using WS-Addressing for Asynchronous Messaging

Both Microsoft .NET and Apache Axis 2 support asynchronous calls to published

web services that are not specifically designed to be accessed in synchronous

manner. The Visual Studio .NET (Microsoft, 2003) help topic “Asynchronous

Design Pattern Overview” states that “One of the innovations provided by the

asynchronous pattern is that the caller decides whether a particular call should be
asynchronous.” This is confirmed for invoking web services in the help topic

“Communicating with XML Web Services Asynchronously” which states “note that

an XML Web service does not have to be specifically written to handle asynchronous

Advances in Networks, Computing and Communications 3

228

requests to be called asynchronously”. This feature is only achievable through using

the Microsoft .NET client API and not through generic SOAP calls. Also this API

only allows the callback to the calling object instance. The callback cannot be routed

to a different host or run-time instance. The Apache Axis 2 asynchronous support

works in the similar way, in that it is achievable through a client API using a non

HTTP transport (Zdun et al 2003).

The Microsoft Web Service Enhancements (WSE) (Microsoft, 2005) provides

additional classes to the .NET framework providing support for the additional web

service specifications such as WS-Security, WS-Trust, WS-Policy and WS-

Addressing. To use the WSE to test the support of WS-Addressing in providing the

callback information a simple web service was created using Microsoft Visual Studio

.NET 2003 and deployed on host running Microsoft Advanced Server 2003. The

WSE provides classes that enable the SOAP headers to be accessed from the

deployed web service. This enables the service to access the values of the WS-

Addressing headers.

The first step was to install the WSE on the Windows Advance Server 2003
computer where the web service is hosted. Once the WSE was installed the supplied

Configuration Editor was used to enable the web service project to operate with the

Web Service Extensions. The code for the Web Service project was then edited to

include the Microsoft.Web.Services2 namespace. The Microsoft.Web.Services2

namespace contains all the classes required to access the SOAP headers such as

ReplyTo and MessageID. Within the web service the following code retrieves the

SoapContext object and gets the string containing the supplied ReplyTo address:

SoapContext ctxt = RequestSoapContext.Current;

string replyTo = ctxt.Addressing.ReplyTo.Address.Value;

The web service is still called using the Request/Response pattern and on

completion, when the return statement of the web service is reached, a standard

SOAP response is returned. This response can be interpreted as a confirmation

message that the SOAP message was successfully received. Below are the headers

included in the response generated by a request to the test WSE enabled web service.

<soap:Header>

 <wsa:Action>http://tempuri.org/AddResponse</wsa:Action>

 <wsa:MessageID>uuid:e40fccdf-3af9-4856-b65c-f3e3db1ad6a7

 </wsa:MessageID>

 <wsa:RelatesTo>uuid:92bccf15-b71d-4a34-b05e-c967b17830bf

 </wsa:RelatesTo>

 <wsa:To>http://uop-project:13000/</wsa:To>

</soap:Header>

As part of the standard request/response pattern the above response is sent back to

the requesting host when the web service completes. When a web service is called

Section 4 – Computing, Computer Applications, Ecommerce & Interactive Intelligent Systems

229

that is not WSE enabled then the WS-Addressing headers are not included within the

response. The To header in the above response matches the ReplyTo header as

defined in the request. When using the WSE the response to the request is not routed

via a new connection to the supplied ReplyTo header. The response, including the

headers, is returned to requesting application. Therefore, the To header in the above

example response does not contain the correct location. For the web service to reply
asynchronously it generates its own SOAP request message that is sent to the

location defined by the received ReplyTo header.

The application has to determine whether the called web service provides an

asynchronous or synchronous service. The application has to determine if the

response received is the result of the service being executed, or if an asynchronous

response delivered in the future will contain the result of the service. The BPEL

specification provides the statements <invoke> and <receive> to explicitly state that

a call to a web service must be performed asynchronously. Therefore for BPEL

processes it must be assumed that developer of the process can recognise whether the

required service is to be accessed asynchronously or not.

Following the initial test a proof of concept for the proposed broker architecture

earlier was created. The proof of concept required four separate elements. These

were:

 An application that would call a web service with WS-Addressing

information contained within the SOAP headers. The application would also

be capable of receiving SOAP messages through an open port. When this

application started it would register itself on a UDDI server advertising a

URL where SOAP messages could be sent. When this application closed it

would un-register itself from the UDDI server.

 A simple web service that reads the WS-Addressing headers and creates a

response SOAP message. That response SOAP message is sent to the
endpoint defined by the supplied ReplyTo header. The ReplyTo header

contains the address of the broker, this is where the asynchronous reply is

sent.

 An application acting as the broker. The broker reads the WS-Addressing

headers. messages and firstly attempts to forward the whole SOAP message

to an available application as advertised on a UDDI server.

 A UDDI server with publishing permissions enabled.

The proposed mechanism uses open standards to reduce the coupling between client

software and an asynchronous web service. The elements described above, when

used together, provide a proof of concept that an asynchronous web service can be
implemented and still be de-coupled from the client. This demonstrates that by

passing the routing information in the SOAP headers that the public interface of web

service was not unnecessarily cluttered. Additionally, by routing the asynchronous

reply via a broker, further benefits are gained. The final end point of response is not

determined at the time of the original request. Any number of end points may be

available if originator of the request is no longer available. This is a distinct

possibility where the time between request and response could be measured in weeks

or months, and would improve the reliability of the overall system. The reliability

Advances in Networks, Computing and Communications 3

230

can be further improved by the broker queuing responses and retrying where no end

points are available.

5. Conclusions

With the advent of the web service standards greater collaborations between

technologies is possible. Now business processes can use these distributed services

and combine them to create new services. However, business processes often require

human interaction. When a human becomes part of the process the process must stop

and wait for a response. This could take seconds, minutes, or even months. Therefore

asynchronous calls to web services are vital for including human interaction within a

business process.

BPEL supports this by providing hard-coded links between services. In an example

given by Juric (2004), process A uses service B, but service B must eventually

callback to process A. This paper proposes that WS-Addressing is an open standard

that enables routing information to be defined within SOAP messages, therefore,

enabling a web service to be accessed asynchronously. By supplying the WS-

Addressing information to the web service through SOAP headers, the web service

interface remains unaffected, and web service need not read the headers if the

information they contain is not required. This means that the application calling the

web service does not need explicitly specify that the interaction should be

asynchronous or not. The web service itself can provide asynchronous callbacks if
required.

The mechanism proposed in this paper was tested through developing an application

that uses WS-Addressing to enable a web service to be called asynchronously.

Microsoft WSE was used to enable a web service to read the supplied WS-

Addressing headers allowing the service to be used asynchronously. The test web

service was created using .NET and published on Microsoft IIS 6.0. Although this

was an entirely Microsoft environment it was used solely to test optionally including

the WS-Addressing within the headers of a SOAP message and allowing the web

service to read these headers and act upon them. These tests also proved that when a

web service is able to perform asynchronously that the asynchronous reply can be

routed to a host supplied within WS-Addressing headers that is different for the
requesting host. This mechanism, therefore, offers a peer-to-peer approach to web

service interaction, using open standards, rather than a traditional client/server

approach. The peer-to-peer approach negates the need to poll the service for results

and allows the response message to be routed to an available client or clients if

required.

6. References

Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klien, J., Leymann, F., Liu, K., Roller,
D., Smith, D., Thatte, S., Trickovic, I., Weerawarana, S. (2003) “Business Process Execition
Language For Web Services 1.1” ftp://www6.software.ibm.com/software/

developer/library/ws-bpel.pdf

Section 4 – Computing, Computer Applications, Ecommerce & Interactive Intelligent Systems

231

Box, D., Ehnebuske, D., Kakivaya, G., Layman, A., Mendelsohn, N., Nielsen, H. F., Thatte,
S., Winer D. (2000) “SOAP 1.1”, http://www.w3.org/TR/2000/NOTE-SOAP-20000508 W3
Consortium (accessed 3rd December 2004)

Christensen, E.; Curbera, F.; Meredith, G.; and Weerawarana, S. (2001) “Web Services

Description Language (WSDL) 1.1.” http://www.w3.org/TR/wsdl (access 3rd December 2004)

Gidgin, M., Hadley M. (2005) “Web Service Addressing 1.0 – Core”, http://www.w3.org/TR/
/2005/WD-ws-addr-core-20050331 (Accessed 7th July 2005).

Juric, M. B., Mathew, B., Poornachandra, S. (2004) Business Process Execution Language for
Web Services, Packt Publishing, ISBN 1-904811-18-3, First Published October 2004.

Microsoft (2003) “Asynchronous Design Pattern Overview” http://msdn.microsoft.com/
library/default.asp?url=/library/enus/cpguide/html/cpconasynchronousdesignpatternoverview.a
sp (Accessed 25th July 2005)

Microsoft (2005) “WSE version 2.0 SP3” http://www.microsoft.com/downloads/details.aspx?
familyid=fc5f06c5-821f-41d3-a4fe-6c7b56423841&displaylang=en (Accessed 26th July 2005)

Weerawarana, S., Curbera, F., Leymann, F., Storey, T., Ferguson, D. F. (2005) Web Service

Platform Architecture, Prentice Hall, ISBN 0-13-148874-0

Zdun, U., Voelter, M., Kircher, M. (2003) “Design and Implementation of an Asynchronous
Invocation Framework for Web Services” in proceedings at International Conference on Web
Services Europe – 2003.

