297

INTEGRATED SERVICES ENGINEERING

P L Reynolds and P W Sanders

Network Research Group, University of Plymouth, UK

1: Introduction

Integrated Services Engineering (ISE) is a relatively
new branch of telecommunication engineering and is
associated with the cost effective creation,
deployment and management of services in a
heterogeneous network environment. The
conceptual separation of bearer networks and user
services is now well established and forms the basis
of the Intelligent Network Architecture currently
being implemented by European and US Telco's.
This separation is being driven, not only by the
technological need to manage complexity, but also
by the deregulation and open network legislation,
which is leading to a multiplicity of service and
bearer network providers. In such an environment,
service engineering requires a process cognisant to
this changing market place.

Within the EU-RACE programme, Project Line 5
addresses issues arising from the particular needs of
service engineering. The basis of their work is an
architectural framework that utilises the Open
Distributed Processing-Reference Model (ODP-RM)
(11 and encompasses the concepts of
Telecommunications Management Networks (TMN)
[2] and Intelligent Networks (IN) [3]. The
progression of ISE started with the definition of an
ODP-RM based ISE framework in ROSA (Race
Open System Architecture) [4], continued with the
definition of an architecture, in Cassiopeia OSA(sys)
and OSA(app) (Open System Architecture-System
and Open System Architecture-Application) [5) and
continues to be developed with a distributed
processing environment based upon OSA(sys),
called the ISE Engineering Platform [6].

2: The ISE Reference Model

A reference model (RM) is an abstraction for all
possible system solutions in a given domain. The
RM defines the solution space or boundaries within
which it provides the terms and concepts for
exploring the specific problem. The RM provides
the basis of the language used to both communicate
and understand the concept by providing a common

background, a set of values, etc. The RM comprises
an outline framework, a set of models and makes
reference to any standards within the domain.

A framework is provided so than an appropriately
structured architecture can be developed that is
logically organised in a way that is relevant to the
domain being addressed. The models allow
discussion and reference to be made for information,
opinion and/or decision making. The standards
allow for imitation, form, style or pattern.

The reference model for ISE is the ODP-RM. It
provides a framework which enables designers to
construct distributed applications without having to
take into account the diversity of hardware. The
ODP-RM Engineering Viewpoint focuses on the
infrastructure and functions required to support
distributed processing and addresses modularity,
transparency, management, autonomy and scaling.
The difference between the Engineering Viewpoint
and the Computational Viewpoint of ODP, and
bhence ISE, can be characterised as being the
distinction between 'what needs to be done'
(computational viewpoint) and how it is to be
achieved' (engineering viewpoint). The model
provides designers of operating systems and
communication experts with a description of an
ODP-RM in terms of the control and transparency
mechanisms, and communications networks that
enable the service distribution. The communication
functions are visible in the engineering viewpoint, so
an engineering language is defined to enable the
specification of the processing, storage and
communication functions required for
implementations, that are based upon ODP-RM.

The syntax and semantics of the engineering
language are object based and include:

* binder objects - they have three interfaces, an
interface to the stub (below), an interface for
interaction with a protocol object, and a control
interface;

¢ capsule - is a set of objects forming a single unit
for processing and storage, e.g. a virtual machine. It

‘Telecommunications’, 26-29 March 1995, Conference Publication No. 404, © IEE, 1995

208

corresponds with the notion of address space or
process in computing systems. A capsule is always
situated at a single node;
e cluster - a set of objects which form a single
unit, .g. Memory;
o communication objects - they interact with
interceptor objects when the communication takes
place between domains, e.g. an inter-sub-network
relay;
. engineeﬁngobjects-thcyneedthesupponofa
distributed structure and interact with each other by
way of their local transparency and nucleus objects;
+ interceptor objects - they correspond to the
notion of gateway, agent or moitor objects;
i node,asetofobjectsfonningasimgletmitin
space, e.g. a switch. A node comprises one nucleus
and a set of capsules;
. nucleus-anoﬁectwhichco—ordimtesﬁmctions
for use by other objects;
o protocol objects - they provide communication
functions. Each has two interfaces, one to interact
with a binder and a communication interface;
o stub objects - they are objects which provide
conversion functiopality. Engineering objects are
bound to stubs. A stub has three interfaces, a
jon interface to the object it supports, a
control interface for quality of service management
andanimerfaoeformmacﬁmwﬁhabinderobject.
¢ transparency - requires ing services, for
example, if engineering objects move location a
means of both recording and discovering current
location is required. Supporting services are
modelled as objects.

In general, an engineering specification:-

o defines the roles of the different objects,

o describes the osganisation of an abstract
inﬁutmcmefoten&IingIheemcmonoftheODP,
+ jdentifies reference points,

o jidentifies the abstractions required to manage
physical distribution.

The ODP-RM defines objects in terms of abstraction
andencapsuwion-as'mckbom',andasetof
observable actions at their boundaries. It is the
interactions between objects and their individual
characteristics or observable actions, which specify
the behaviour, imrespective of the objects’ internal
structure. Objects can be used to divide the problem
into a number of distinguishable elements and allow
each to be treated independently. The same object
may be implemented in a pumber of ways in
different environments, but each implementation can

the same service. The abstraction is
achieved by focusing upon the bebaviour of the
objects. All objects interact in the same way;
encapsulation ensures that the information contained

by an object is accessible only through invocation of
the service offered by the object. Interactions
between objects and their environment are ruled by
contracts. A contract constrains the co-operation
between a set of objects. In the sense a contract isa
dynamic specification of the configuration of the
object. As an example, 2 particular contract deals
with the Quality of Service (QoS) attributes of an
interaction that are related to the invocation, such as
timing constraints, resolution, load, reliability, rate
of information transfer, the latency, the probability
of a communication being disrupted, the probability
of system failure, the probability of storage failure,
etc. QoS rules may be needed: to identify relevant
quality attributes of resources, to express qualitative
measures for the identified attributes, to express
subjective ordering of perceived user satisfaction, to
express QoS negotiation, etc.

In a system involving ODP-RM, objects are
responsible for their own mapagement. They may
be requested by a mamagement application, e.g.
TMN, to modify their own bebaviour. An object
must therefore provide a management function
whichpemﬁtsitsummalactivitytobemonimd
and possibly modified. Deciding what is

t and what is the normal function of an
object may be rather difficult. One criterion is that
management of the object should not be critical to
its normal operation. For example, a management
qnstion could include monitoring of its

, and changing the number of buffers it
uses. Similarly use of encryption is considered part
of a security service, but distribution of the keys
used for encryption would be a management
function.

Objects are communicated with, and used by way of,
their interfaces. An interface represents a set of
operations. Qperations are grouped into the same
interface when they are likely to be used by the same
client. For example, the management ope: rations and
pon-management operations would normally be
possessanmnberofinterfaces. Interfaces are either
created as part of the process of ingiagfiati
givenobjectorthcyarecreatedas jons to some
existing object. An interface and its gbject work by
a process called hiding. For example, in a directory
object, the request, reply and error actions in the
definition of the directory object are hidden at its
management interface. That is, all non-management
acﬁonsarereplacedbyanimemalactioncalledan

i

change security actions, etc. would be hidden and
replace these with i-actions. In summary interfaces
can be derived from objects by hiding all irrelevant
actions.

Objects are the primary building block, not
interfaces. A distributed application can be regarded
as a configuration of objects, some of which are
composite. The design of such an application
involves identifying the objects and configurations,
and, if they do not exist, designing them.

The design can be split into several stages, and
involve:

* object composition:- by way of a configuration
specification which provides a description of the
software structure of a system, i.e. a composite
object, described in terms of its constitute objects
and their interconnections;

¢ object decomposition:- knowing how to
decompose an object is not easy. There may be a
number of decompositions which are equivalent to
the original object. As an example, take the
development of a communication object. Initially,
two objects are modelled as interacting directly.
The two objects can themselves by decomposed into
two objects, each with one object providing the
communication function. The two derived
communication objects can be combined into a
single communication object that hides the original
interface between the two original objects.

There are a number of extensions necessary to the
ODP-RM if it is to be used for ISE. These include:

the development of the managed object concept
in which objects are expanded so as to manage the
resource aspects of a distributed service, which
covers:

¢ acoounting management (effective
deployment so as to maxintise return on investment);

* resource management (efficient deployment
of resetirces so as to minimise cost);

* service engineering management
(management of risk associated with mmntaming a
service level agreement);
¢ the definition of a building block, which is
usually decomposed into functional elements,
network elements and chargeable units.
¢ the separation of service provision into two
separate phases. In the first of these, the service is
offered to the user and the result is a selection of the
service (selection). The second phase is the
establishment and use of an instance of the service
which includes both service delivery and the
generation of billing information (invocation).

*

3: The ISE Architecture

An architecture is the materialisation of style. An
architecure is not a design for a domain, in the same
way that gothic architecture is not the same as the

299

Houses of Parliament, but provides a qualitative
definition of style, by giving the base specification,
functions and guidelines for the decomposition of
functionality into style components. These
components provide the wherewithal necessary to
generate a particular solution that will reflect this
style. Four components are provided by the
architecture:

¢ building blocks and tools,

guidelines, which help the designer reach
answers or give answers in an unknown situation.

+ recipes, which give advice on how to build
subsystems with certain properties, and

¢ rules, which constrain the building block
combinations.

L

Thus the architecture provides the art and science of
designing with components that will produce an
observable style, down to a granularity that is not
cognisant of the internal realisation. This allows the
designer to focus on what a system is meant to
provide rather than how it is internally organised.
Hence the architect has no interest in the technology
that provides the building blocks! In linguistic terms
the architecture provides the language syntax, i.e.
the structure and form, grammar and rules governing
the properly formed components of a logically based
language.

Two parallel architectures exist for considerations.
The first is the RACE/OSA and the second TINA-C
(Telecommunication Information Networking
Architecture Consortium) [7}. The latter is a
consortium formed by network operators,
telecommunication equipment and computer
suppliers. Both are based upon the OPP-RM. It is
expected that the two architectures will merge at
some future date.

The OSA architecture is presented from two
perspectives; OSA(app) and OSA(sys). OSA(app)
views the architecture from an application
perspective, i.e. service analysis and design, whilst
OSA(sys) views the architecture from a system
perspective, i.e. for a constructor of an environment
on which the services can be provided. OSA(sys)
acknowledges that there will be a move away from
‘exciting’ technical solutions to ones driven by the
market and business developments. OSA(sys) is a
distinct architecture. It provides a network model
made up of ODP-RM mechanisms running on
logical nodes and deals with platforms on which
services may be implemented. The system designer
is concemmed with the system (service machine)
providing the service.

A service machine is a distributed system of
fmﬁons,mdsuppoﬁsmmentmdmd(to
glue the elements!); it turns a system perspective
into a service perspective. In"ODP-RM terminology
thenrvicemachinccanbeth@ughtofas
'‘middieware’. Middleware has two views: one faces
towards the * technology and is application
independent, being supplied by libraries, and is
responsible for binding, authentication and location,
etc.;thboﬂmfaastowafdsthcwmmdis
wmm,mdhoomaédmmm
peraistence, transparency, etc. OSA(sys) is restricted
bythelimmdecpnb&iﬁesoftheloworlevel
sesource, ° possi stemming from physical
limitations. The OSA architecture is considered a
highlevelplatfomwhichsitsonaninﬁ'asnumne
seen as functiomsl units. The OSA(sys) uses an
ODP-RM approach and modsis the network as a
series of intercoanected service nodes which are a

ion of resemrce access and adaptation.
Bwhmvicemﬂeoomisesammleusobjectmd
resource adapter, distributed processing and
deployed computing objects.

4: The ISE Piatform

Amhamd'mﬁmofmmhmmstylein
afomthtprovidesapreciaeﬁmaﬁomlity. The
Momaimthedesigmrtoen@linthe
style into any realisation. A platform realisation can
beatdmmmmemmewesviewedby
the emgincering viowpoint, ie., the deployment
M(&mm-mmw-
and the distribution umit - cluster) as well as

i petworks and

300

The ISE engineering platform details the
mechanisms required for the transparent interaction
of objects that comprise a telecommunication
service. It is shown in outline in figure ome, and
comprises a distributed environment and application
development environmeant. It is the infrastructure
that provides the distribution transparencies and
communication facilities betwgen objects,
indcpendemofthelocalopemtingsystemaadthe
heterogeneous underlying technology. It consists of
a kemnel, or nucleus, and 3 collection of servers.
Examples of the servers include:

communications
version control
management
trader

TheappliwiondevelopmemGnviromemisasetof
tools for the development of applications for the
distribated processing environment, e.g. stub
generator, and inchudes:

protocols

stubs

bindings
transparencies
generic run time
etc.

The ISE platform focuses on the eagineering
specification of the dephgmmofobjectsinmderm

i i of
telecomnmﬁutions,admlingswhtqﬁcsasths
aﬁﬁwdmmmmmmz
interactions,

symmscnmigrmtoaplatfonn for ISE.

Reference Architecture Platform
Model e
l_ 1 -
| -
. T
Py C:f’“" | EURSAF
| rcnitecture l Engineering
i | Platform
_ | &8 TINA-C |
Viewpoing |~ —"1———-—

| IR |

301

This focusing should allow the definition, in general,
of a unified interface of the building blocks [objects,
components or clusters] that comprise the platform
and an association mechanism suited to the
requirements of telecommunications. -

§: Conclusions

The design of an engineering platform for a wide
range of different services that can be integrated and
controlled within an open distributed environment is
very complex.

There is a need to provide many engineering
characteristics in a transparent and manageable
fashion. The platform must support transparency to
the underlying technology in the majority of actions,
but must allow some translucency to allow the
services to be managed by the service provider
and/or user. An extended object oriented approach
can provide full flexibility to meet these
requirements. The need to select a suitable
architecture is essential to ensure efficiency and
inter-working standardisation,

References

1. Linington, P.F., "Introduction to the Open
Distributed Processing Basic Reference Model".
Elsevier Science Publishers, 1992.

2. Magedanz, T "IN and TMN: the basis for
future information nctwokag architectures”.
Computer Commumications, Vol. 16, May 1993.

3. Sharp, C.D., "Advanced Intelligent Networks -
Now a reality”. 4th IEE Conference on
Telecommunication, April 1993.

4. "ROSA Architectre”, CEC ROSA,
Y, Deliverable
93/BT/DNR/DS/A.005/b1.

5. "Integrated Service Engineering
CASSIOPEIA", CEC RACE project R2049
Deliverable R2049/CRA/SAR/DS/P/0 14/b1.

6. "European Standards Architecture Farmulation",
(EURSAF). CEC RACE project R2124.

7. Fuente, L., "Application of TINA Architecture
to Management Services”, Proc. Int. conf. of
InteﬂlgencethoMSerwcesandNetworks
Aachen, September 1994,

