Research Student Profile

Home People Profile...

Dr Mubarak Jibril

Research Student

Brief biographical information



Access thesis on-line

Algebraic Codes For Error Correction In Digital Communication Systems

C. Shannon presented theoretical conditions under which communication was possible
error-free in the presence of noise. Subsequently the notion of using error
correcting codes to mitigate the effects of noise in digital transmission was introduced
by R. Hamming. Algebraic codes, codes described using powerful tools from
algebra took to the fore early on in the search for good error correcting codes. Many
classes of algebraic codes now exist and are known to have the best properties of
any known classes of codes. An error correcting code can be described by three of its
most important properties length, dimension and minimum distance. Given codes
with the same length and dimension, one with the largest minimum distance will
provide better error correction. As a result the research focuses on finding improved
codes with better minimum distances than any known codes.


Algebraic geometry codes are obtained from curves. They are a culmination of years
of research into algebraic codes and generalise most known algebraic codes. Additionally
they have exceptional distance properties as their lengths become arbitrarily
large. Algebraic geometry codes are studied in great detail with special attention
given to their construction and decoding. The practical performance of these codes
is evaluated and compared with previously known codes in different communication
channels. Furthermore many new codes that have better minimum distance
to the best known codes with the same length and dimension are presented from
a generalised construction of algebraic geometry codes. Goppa codes are also an
important class of algebraic codes. A construction of binary extended Goppa codes
is generalised to codes with nonbinary alphabets and as a result many new codes
are found. This construction is shown as an efficient way to extend another well
known class of algebraic codes, BCH codes. A generic method of shortening codes
whilst increasing the minimum distance is generalised. An analysis of this method
reveals a close relationship with methods of extending codes. Some new codes from
Goppa codes are found by exploiting this relationship. Finally an extension method
for BCH codes is presented and this method is shown be as good as a well known
method of extension in certain cases.

Dr Mubarak Jibril

Director of studies: Dr Mohammed Z Ahmed
Other supervisors: Prof Martin Tomlinson, Dr Cen Tjhai

Sorry, no publications listed for this author.